Spaces:
Running
Running
File size: 11,336 Bytes
5325fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import typing as tp
import flashy
import julius
import omegaconf
import torch
import torch.nn.functional as F
from . import builders
from . import base
from .. import models
from ..modules.diffusion_schedule import NoiseSchedule
from ..metrics import RelativeVolumeMel
from ..models.builders import get_processor
from ..utils.samples.manager import SampleManager
from ..solvers.compression import CompressionSolver
class PerStageMetrics:
"""Handle prompting the metrics per stage.
It outputs the metrics per range of diffusion states.
e.g. avg loss when t in [250, 500]
"""
def __init__(self, num_steps: int, num_stages: int = 4):
self.num_steps = num_steps
self.num_stages = num_stages
def __call__(self, losses: dict, step: tp.Union[int, torch.Tensor]):
if type(step) is int:
stage = int((step / self.num_steps) * self.num_stages)
return {f"{name}_{stage}": loss for name, loss in losses.items()}
elif type(step) is torch.Tensor:
stage_tensor = ((step / self.num_steps) * self.num_stages).long()
out: tp.Dict[str, float] = {}
for stage_idx in range(self.num_stages):
mask = (stage_tensor == stage_idx)
N = mask.sum()
stage_out = {}
if N > 0: # pass if no elements in the stage
for name, loss in losses.items():
stage_loss = (mask * loss).sum() / N
stage_out[f"{name}_{stage_idx}"] = stage_loss
out = {**out, **stage_out}
return out
class DataProcess:
"""Apply filtering or resampling.
Args:
initial_sr (int): Initial sample rate.
target_sr (int): Target sample rate.
use_resampling: Whether to use resampling or not.
use_filter (bool):
n_bands (int): Number of bands to consider.
idx_band (int):
device (torch.device or str):
cutoffs ():
boost (bool):
"""
def __init__(self, initial_sr: int = 24000, target_sr: int = 16000, use_resampling: bool = False,
use_filter: bool = False, n_bands: int = 4,
idx_band: int = 0, device: torch.device = torch.device('cpu'), cutoffs=None, boost=False):
"""Apply filtering or resampling
Args:
initial_sr (int): sample rate of the dataset
target_sr (int): sample rate after resampling
use_resampling (bool): whether or not performs resampling
use_filter (bool): when True filter the data to keep only one frequency band
n_bands (int): Number of bands used
cuts (none or list): The cutoff frequencies of the band filtering
if None then we use mel scale bands.
idx_band (int): index of the frequency band. 0 are lows ... (n_bands - 1) highs
boost (bool): make the data scale match our music dataset.
"""
assert idx_band < n_bands
self.idx_band = idx_band
if use_filter:
if cutoffs is not None:
self.filter = julius.SplitBands(sample_rate=initial_sr, cutoffs=cutoffs).to(device)
else:
self.filter = julius.SplitBands(sample_rate=initial_sr, n_bands=n_bands).to(device)
self.use_filter = use_filter
self.use_resampling = use_resampling
self.target_sr = target_sr
self.initial_sr = initial_sr
self.boost = boost
def process_data(self, x, metric=False):
if x is None:
return None
if self.boost:
x /= torch.clamp(x.std(dim=(1, 2), keepdim=True), min=1e-4)
x * 0.22
if self.use_filter and not metric:
x = self.filter(x)[self.idx_band]
if self.use_resampling:
x = julius.resample_frac(x, old_sr=self.initial_sr, new_sr=self.target_sr)
return x
def inverse_process(self, x):
"""Upsampling only."""
if self.use_resampling:
x = julius.resample_frac(x, old_sr=self.target_sr, new_sr=self.target_sr)
return x
class DiffusionSolver(base.StandardSolver):
"""Solver for compression task.
The diffusion task allows for MultiBand diffusion model training.
Args:
cfg (DictConfig): Configuration.
"""
def __init__(self, cfg: omegaconf.DictConfig):
super().__init__(cfg)
self.cfg = cfg
self.device = cfg.device
self.sample_rate: int = self.cfg.sample_rate
self.codec_model = CompressionSolver.model_from_checkpoint(
cfg.compression_model_checkpoint, device=self.device)
self.codec_model.set_num_codebooks(cfg.n_q)
assert self.codec_model.sample_rate == self.cfg.sample_rate, (
f"Codec model sample rate is {self.codec_model.sample_rate} but "
f"Solver sample rate is {self.cfg.sample_rate}."
)
assert self.codec_model.sample_rate == self.sample_rate, \
f"Sample rate of solver {self.sample_rate} and codec {self.codec_model.sample_rate} " \
"don't match."
self.sample_processor = get_processor(cfg.processor, sample_rate=self.sample_rate)
self.register_stateful('sample_processor')
self.sample_processor.to(self.device)
self.schedule = NoiseSchedule(
**cfg.schedule, device=self.device, sample_processor=self.sample_processor)
self.eval_metric: tp.Optional[torch.nn.Module] = None
self.rvm = RelativeVolumeMel()
self.data_processor = DataProcess(initial_sr=self.sample_rate, target_sr=cfg.resampling.target_sr,
use_resampling=cfg.resampling.use, cutoffs=cfg.filter.cutoffs,
use_filter=cfg.filter.use, n_bands=cfg.filter.n_bands,
idx_band=cfg.filter.idx_band, device=self.device)
@property
def best_metric_name(self) -> tp.Optional[str]:
if self._current_stage == "evaluate":
return 'rvm'
else:
return 'loss'
@torch.no_grad()
def get_condition(self, wav: torch.Tensor) -> torch.Tensor:
codes, scale = self.codec_model.encode(wav)
assert scale is None, "Scaled compression models not supported."
emb = self.codec_model.decode_latent(codes)
return emb
def build_model(self):
"""Build model and optimizer as well as optional Exponential Moving Average of the model.
"""
# Model and optimizer
self.model = models.builders.get_diffusion_model(self.cfg).to(self.device)
self.optimizer = builders.get_optimizer(self.model.parameters(), self.cfg.optim)
self.register_stateful('model', 'optimizer')
self.register_best_state('model')
self.register_ema('model')
def build_dataloaders(self):
"""Build audio dataloaders for each stage."""
self.dataloaders = builders.get_audio_datasets(self.cfg)
def show(self):
# TODO
raise NotImplementedError()
def run_step(self, idx: int, batch: torch.Tensor, metrics: dict):
"""Perform one training or valid step on a given batch."""
x = batch.to(self.device)
loss_fun = F.mse_loss if self.cfg.loss.kind == 'mse' else F.l1_loss
condition = self.get_condition(x) # [bs, 128, T/hop, n_emb]
sample = self.data_processor.process_data(x)
input_, target, step = self.schedule.get_training_item(sample,
tensor_step=self.cfg.schedule.variable_step_batch)
out = self.model(input_, step, condition=condition).sample
base_loss = loss_fun(out, target, reduction='none').mean(dim=(1, 2))
reference_loss = loss_fun(input_, target, reduction='none').mean(dim=(1, 2))
loss = base_loss / reference_loss ** self.cfg.loss.norm_power
if self.is_training:
loss.mean().backward()
flashy.distrib.sync_model(self.model)
self.optimizer.step()
self.optimizer.zero_grad()
metrics = {
'loss': loss.mean(), 'normed_loss': (base_loss / reference_loss).mean(),
}
metrics.update(self.per_stage({'loss': loss, 'normed_loss': base_loss / reference_loss}, step))
metrics.update({
'std_in': input_.std(), 'std_out': out.std()})
return metrics
def run_epoch(self):
# reset random seed at the beginning of the epoch
self.rng = torch.Generator()
self.rng.manual_seed(1234 + self.epoch)
self.per_stage = PerStageMetrics(self.schedule.num_steps, self.cfg.metrics.num_stage)
# run epoch
super().run_epoch()
def evaluate(self):
"""Evaluate stage.
Runs audio reconstruction evaluation.
"""
self.model.eval()
evaluate_stage_name = f'{self.current_stage}'
loader = self.dataloaders['evaluate']
updates = len(loader)
lp = self.log_progress(f'{evaluate_stage_name} estimate', loader, total=updates, updates=self.log_updates)
metrics = {}
n = 1
for idx, batch in enumerate(lp):
x = batch.to(self.device)
with torch.no_grad():
y_pred = self.regenerate(x)
y_pred = y_pred.cpu()
y = batch.cpu() # should already be on CPU but just in case
rvm = self.rvm(y_pred, y)
lp.update(**rvm)
if len(metrics) == 0:
metrics = rvm
else:
for key in rvm.keys():
metrics[key] = (metrics[key] * n + rvm[key]) / (n + 1)
metrics = flashy.distrib.average_metrics(metrics)
return metrics
@torch.no_grad()
def regenerate(self, wav: torch.Tensor, step_list: tp.Optional[list] = None):
"""Regenerate the given waveform."""
condition = self.get_condition(wav)
initial = self.schedule.get_initial_noise(self.data_processor.process_data(wav)) # sampling rate changes.
result = self.schedule.generate_subsampled(self.model, initial=initial, condition=condition,
step_list=step_list)
result = self.data_processor.inverse_process(result)
return result
def generate(self):
"""Generate stage."""
sample_manager = SampleManager(self.xp)
self.model.eval()
generate_stage_name = f'{self.current_stage}'
loader = self.dataloaders['generate']
updates = len(loader)
lp = self.log_progress(generate_stage_name, loader, total=updates, updates=self.log_updates)
for batch in lp:
reference, _ = batch
reference = reference.to(self.device)
estimate = self.regenerate(reference)
reference = reference.cpu()
estimate = estimate.cpu()
sample_manager.add_samples(estimate, self.epoch, ground_truth_wavs=reference)
flashy.distrib.barrier()
|