Uncrop / app.py
Fabrice-TIERCELIN's picture
Use diffusers/stable-diffusion-xl-1.0-inpainting-0.1
9df6753 verified
raw
history blame
16.2 kB
from diffusers import StableDiffusionXLInpaintPipeline
import gradio as gr
import numpy as np
import time
import math
import random
import imageio
from PIL import Image, ImageFilter
import torch
max_64_bit_int = 2**63 - 1
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1")
pipe = pipe.to(device)
def noise_color(color, noise):
return color + random.randint(- noise, noise)
def check(
source_img,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
denoising_steps,
num_inference_steps,
guidance_scale,
randomize_seed,
seed,
debug_mode,
progress = gr.Progress()):
if source_img is None:
raise gr.Error("Please provide an image.")
if prompt is None or prompt == "":
raise gr.Error("Please provide a prompt input.")
if (not (enlarge_top is None)) and enlarge_top < 0:
raise gr.Error("Please provide positive top margin.")
if (not (enlarge_right is None)) and enlarge_right < 0:
raise gr.Error("Please provide positive right margin.")
if (not (enlarge_bottom is None)) and enlarge_bottom < 0:
raise gr.Error("Please provide positive bottom margin.")
if (not (enlarge_left is None)) and enlarge_left < 0:
raise gr.Error("Please provide positive left margin.")
if (
(enlarge_top is None or enlarge_top == 0)
and (enlarge_right is None or enlarge_right == 0)
and (enlarge_bottom is None or enlarge_bottom == 0)
and (enlarge_left is None or enlarge_left == 0)
):
raise gr.Error("At least one border must be enlarged.")
def queue():
return []
def uncrop(
source_img,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
denoising_steps,
num_inference_steps,
guidance_scale,
randomize_seed,
seed,
debug_mode,
progress = gr.Progress()):
check(
source_img,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
denoising_steps,
num_inference_steps,
guidance_scale,
randomize_seed,
seed,
debug_mode
)
start = time.time()
progress(0, desc = "Preparing data...")
if enlarge_top is None or enlarge_top == "":
enlarge_top = 0
if enlarge_right is None or enlarge_right == "":
enlarge_right = 0
if enlarge_bottom is None or enlarge_bottom == "":
enlarge_bottom = 0
if enlarge_left is None or enlarge_left == "":
enlarge_left = 0
if negative_prompt is None:
negative_prompt = ""
if smooth_border is None:
smooth_border = 20
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
#pipe = pipe.manual_seed(seed)
try:
imageio.imwrite("data.png", source_img)
except:
raise gr.Error("Can't read input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")
# Input image
try:
input_image = Image.open("data.png").convert("RGB")
except:
raise gr.Error("Can't open input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")
original_height, original_width, original_channel = np.array(input_image).shape
output_width = enlarge_left + original_width + enlarge_right
output_height = enlarge_top + original_height + enlarge_bottom
# Enlarged image
enlarged_image = Image.new(mode = input_image.mode, size = (original_width, original_height), color = "black")
enlarged_image.paste(input_image, (0, 0))
enlarged_image = enlarged_image.resize((output_width, output_height))
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height))
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top))
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top))
vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2))
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2)))
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height))
returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2))
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2)))
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height))
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2)))
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height))
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))
# Noise image
noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black")
enlarged_pixels = enlarged_image.load()
for i in range(output_width):
for j in range(output_height):
enlarged_pixel = enlarged_pixels[i, j]
noise = min(max(enlarge_left - i, i - (enlarge_left + original_width), enlarge_top - j, j - (enlarge_top + original_height), 0), 255)
noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255))
enlarged_image.paste(noise_image, (0, 0))
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
# Mask
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
black_mask = Image.new(mode = input_image.mode, size = (original_width - smooth_border, original_height - smooth_border), color = (127, 127, 127, 0))
mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), enlarge_top + (smooth_border // 2)))
mask_image = mask_image.filter(ImageFilter.BoxBlur((smooth_border // 2)))
limitation = "";
# Limited to 1 million pixels
if 1024 * 1024 < output_width * output_height:
factor = ((1024 * 1024) / (output_width * output_height))**0.5
output_width = math.floor(output_width * factor)
output_height = math.floor(output_height * factor)
limitation = " Due to technical limitation, the image have been downscaled.";
# Width and height must be multiple of 8
output_width = output_width - (output_width % 8)
output_height = output_height - (output_height % 8)
progress(None, desc = "Processing...")
output_image = pipe(seeds=[seed], width = output_width, height = output_height, prompt = prompt, negative_prompt = negative_prompt, image = enlarged_image, mask_image = mask_image, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, denoising_steps = denoising_steps, show_progress_bar = True).images[0]
if debug_mode == False:
input_image = None
enlarged_image = None
mask_image = None
end = time.time()
secondes = int(end - start)
minutes = secondes // 60
secondes = secondes - (minutes * 60)
hours = minutes // 60
minutes = minutes - (hours * 60)
return [
output_image,
"Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation,
input_image,
enlarged_image,
mask_image
]
def toggle_debug(is_debug_mode):
if is_debug_mode:
return [gr.update(visible = True)] * 3
else:
return [gr.update(visible = False)] * 3
with gr.Blocks() as interface:
gr.Markdown(
"""
<p style="text-align: center;"><b><big><big><big>Uncrop</big></big></big></b></p>
<p style="text-align: center;">Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, without installation, which can be downloaded</p>
<br/>
<br/>
🚀 Powered by <i>SDXL 1.0</i> artificial intellingence. For illustration purpose, not information purpose. The new content is not based on real information but imagination.
<br/>
<ul>
<li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li>
<li>To <b>upscale</b> your image, I recommend to use <i>Ilaria Upscaler</i>,</li>
<li>To <b>slightly change</b> your image, I recommend to use <i>Image-to-Image SDXL</i>,</li>
<li>To change <b>one detail</b> on your image, I recommend to use <i>Inpaint SDXL</i>,</li>
<li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li>
<li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li>
<li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li>
</ul>
<br/>
🐌 Slow process... ~40 min.<br>You can duplicate this space on a free account, it works on CPU.<br/>
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
<br/>
⚖️ You can use, modify and share the generated images but not for commercial uses.
"""
)
with gr.Row():
with gr.Column():
dummy_1 = gr.Label(visible = False)
with gr.Column():
enlarge_top = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top ⬆️", info = "in pixels")
with gr.Column():
dummy_2 = gr.Label(visible = False)
with gr.Row():
with gr.Column():
enlarge_left = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left ⬅️", info = "in pixels")
with gr.Column():
source_img = gr.Image(label = "Your image", sources = ["upload"], type = "numpy")
with gr.Column():
enlarge_right = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right ➡️", info = "in pixels")
with gr.Row():
with gr.Column():
dummy_3 = gr.Label(visible = False)
with gr.Column():
enlarge_bottom = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom ⬇️", info = "in pixels")
with gr.Column():
dummy_4 = gr.Label(visible = False)
with gr.Row():
prompt = gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image')
with gr.Row():
with gr.Accordion("Advanced options", open = False):
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
smooth_border = gr.Slider(minimum = 0, maximum = 1024, value = 20, step = 2, label = "Smooth border", info = "lower=preserve original, higher=seamless")
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
num_inference_steps = gr.Slider(minimum = 10, maximum = 25, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
with gr.Row():
submit = gr.Button("Uncrop", variant = "primary")
with gr.Row():
uncropped_image = gr.Image(label = "Uncropped image")
with gr.Row():
information = gr.Label(label = "Information")
with gr.Row():
original_image = gr.Image(label = "Original image", visible = False)
with gr.Row():
enlarged_image = gr.Image(label = "Enlarged image", visible = False)
with gr.Row():
mask_image = gr.Image(label = "Mask image", visible = False)
submit.click(toggle_debug, debug_mode, [
original_image,
enlarged_image,
mask_image
], queue = False, show_progress = False).then(check, inputs = [
source_img,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
denoising_steps,
num_inference_steps,
guidance_scale,
randomize_seed,
seed,
debug_mode
], outputs = [], queue = False,
show_progress = False).success(fn = queue, inputs = [], outputs = [], queue = True, show_progress = False).then(uncrop, inputs = [
source_img,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
denoising_steps,
num_inference_steps,
guidance_scale,
randomize_seed,
seed,
debug_mode
], outputs = [
uncropped_image,
information,
original_image,
enlarged_image,
mask_image
], scroll_to_output = True)
gr.Examples(
inputs = [
source_img,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
smooth_border,
denoising_steps,
num_inference_steps,
guidance_scale,
randomize_seed,
seed,
debug_mode
],
outputs = [
uncropped_image,
information,
original_image,
enlarged_image,
mask_image
],
examples = [
[
"Example1.png",
64,
64,
64,
64,
"Stone wall, front view, homogene light",
"Border, frame, painting, scribbling, smear, noise, blur, watermark",
20,
1000,
20,
7,
True,
42,
False
],
],
cache_examples = False,
)
interface.queue().launch()