Uncrop / app.py
Fabrice-TIERCELIN's picture
Bracket
20b47ed verified
raw
history blame
9.4 kB
from diffusers import StableDiffusionXLInpaintPipeline
import gradio as gr
import numpy as np
import math
import random
import imageio
from PIL import Image
from PIL import ImageFilter
import torch
import modin.pandas as pd
max_64_bit_int = 2**63 - 1
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", safety_checker = None)
pipe = pipe.to(device)
def noise_color(color, noise):
return color + random.randint(- noise, noise)
def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left, prompt, negative_prompt, denoising_steps, num_inference_steps, guidance_scale, randomize_seed, seed, progress=gr.Progress()):
progress(0, desc = "Preparing data...")
if source_img is None:
raise gr.Error("Please provide an image.")
if prompt is None or prompt == "":
raise gr.Error("Please provide a prompt input.")
if negative_prompt is None or negative_prompt == "":
raise gr.Error("Please provide a negative prompt input.")
if enlarge_top < 0 or enlarge_right < 0 or enlarge_bottom < 0 or enlarge_left < 0:
raise gr.Error("Please only provide positive margins.")
if enlarge_top == 0 and enlarge_right == 0 and enlarge_bottom == 0 and enlarge_left == 0:
raise gr.Error("At least one border must be enlarged.")
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
#pipe = pipe.manual_seed(seed)
imageio.imwrite("data.png", source_img)
# Input image
input_image = Image.open("data.png").convert("RGB")
original_height, original_width, original_channel = np.array(input_image).shape
output_width = enlarge_left + original_width + enlarge_right
output_height = enlarge_top + original_height + enlarge_bottom
# Enlarged image
enlarged_image = Image.new(mode = input_image.mode, size = (original_height, original_width), color = "black")
enlarged_image.paste(input_image, (0, 0))
enlarged_image = enlarged_image.resize((output_width, output_height))
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(25))
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height))
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top))
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top))
vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2))
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2)))
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height))
returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2))
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2)))
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height))
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2)))
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height))
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(25))
# Noise image
noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black")
enlarged_pixels = enlarged_image.load()
for i in range(output_width):
for j in range(output_height):
enlarged_pixel = enlarged_pixels[i, j]
noise = max(min(abs(enlarge_left - i), abs(enlarge_top + original_width - i), abs(enlarge_top - j), abs(enlarge_top + original_height - j), 255)
noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255))
enlarged_image.paste(noise_image, (0, 0))
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
# Mask
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
black_mask = Image.new(mode = input_image.mode, size = (original_width - 20, original_height - 20), color = (0, 0, 0, 0))
mask_image.paste(black_mask, (enlarge_left + 10, enlarge_top + 10))
mask_image = mask_image.filter(ImageFilter.BoxBlur(10))
limitation = "";
# Limited to 1 million pixels
if 1024 * 1024 < output_width * output_height:
factor = ((1024 * 1024) / (output_width * output_height))**0.5
output_width = math.floor(output_width * factor)
output_height = math.floor(output_height * factor)
limitation = " Due to technical limitation, the image have been downscaled.";
# Width and height must be multiple of 8
output_width = output_width - (output_width % 8)
output_height = output_height - (output_height % 8)
progress(None, desc = "Processing...")
output_image = pipe(seeds=[seed], width = output_width, height = output_height, prompt = prompt, negative_prompt = negative_prompt, image = enlarged_image, mask_image = mask_image, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, denoising_steps = denoising_steps, show_progress_bar = True).images[0]
return [output_image, "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + str(output_width * output_height) + " pixels." + limitation, input_image, enlarged_image, mask_image]
title = "Uncrop"
description = "<p style='text-align: center;'>Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p><br/><br/>Powered by <i>SDXL 1.0</i> artificial intellingence<br/><ul><li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li><li>If you need to <b>upscale</b> your image, I recommend you to use <i>Ilaria Upscaler</i>,</li><li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li><li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>.</li></ul><br/>🐌 Slow process... ~20 min with 20 inference steps, ~6 hours with 25 inference steps.<br>You can duplicate this space on a free account, it works on CPU.<br/><a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a><br/><br/>⚖️ You can use, modify and share the generated images but not for commercial uses."
gr.Interface(fn = predict, inputs = [
gr.Image(label = "Your image", source = "upload", type = "numpy"),
gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top", info = "in pixels"),
gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right", info = "in pixels"),
gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom", info = "in pixels"),
gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left", info = "in pixels"),
gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image'),
gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur'),
gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result"),
gr.Slider(minimum = 10, maximum = 25, value = 10, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality"),
gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt"),
gr.Checkbox(label = "Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different"),
gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
], outputs = [
gr.Image(label = "Uncropped image"),
gr.Label(),
gr.Image(label = "Original image"),
gr.Image(label = "Enlarged image"),
gr.Image(label = "Mask image")
], title = title, description = description).launch(max_threads = True)