Spaces:
Running
Running
Fabrice-TIERCELIN
commited on
Image Guidance Scale, Strength and Black mask
Browse files
app.py
CHANGED
@@ -30,6 +30,8 @@ def check(
|
|
30 |
denoising_steps,
|
31 |
num_inference_steps,
|
32 |
guidance_scale,
|
|
|
|
|
33 |
randomize_seed,
|
34 |
seed,
|
35 |
debug_mode,
|
@@ -72,6 +74,8 @@ def uncrop(
|
|
72 |
denoising_steps,
|
73 |
num_inference_steps,
|
74 |
guidance_scale,
|
|
|
|
|
75 |
randomize_seed,
|
76 |
seed,
|
77 |
debug_mode,
|
@@ -88,6 +92,8 @@ def uncrop(
|
|
88 |
denoising_steps,
|
89 |
num_inference_steps,
|
90 |
guidance_scale,
|
|
|
|
|
91 |
randomize_seed,
|
92 |
seed,
|
93 |
debug_mode
|
@@ -122,6 +128,12 @@ def uncrop(
|
|
122 |
if guidance_scale is None:
|
123 |
guidance_scale = 7
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
if randomize_seed:
|
126 |
seed = random.randint(0, max_64_bit_int)
|
127 |
|
@@ -182,7 +194,7 @@ def uncrop(
|
|
182 |
|
183 |
# Mask
|
184 |
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
|
185 |
-
black_mask = Image.new(mode = input_image.mode, size = (original_width - smooth_border, original_height - smooth_border), color = (
|
186 |
mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), enlarge_top + (smooth_border // 2)))
|
187 |
mask_image = mask_image.filter(ImageFilter.BoxBlur((smooth_border // 2)))
|
188 |
|
@@ -226,6 +238,8 @@ def uncrop(
|
|
226 |
mask_image = mask_image,
|
227 |
num_inference_steps = num_inference_steps,
|
228 |
guidance_scale = guidance_scale,
|
|
|
|
|
229 |
denoising_steps = denoising_steps,
|
230 |
show_progress_bar = True
|
231 |
).images[0]
|
@@ -308,17 +322,21 @@ with gr.Blocks() as interface:
|
|
308 |
with gr.Row():
|
309 |
prompt = gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image')
|
310 |
with gr.Row():
|
311 |
-
|
312 |
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
|
313 |
smooth_border = gr.Slider(minimum = 0, maximum = 1024, value = 0, step = 2, label = "Smooth border", info = "lower=preserve original, higher=seamless")
|
314 |
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
|
315 |
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
|
316 |
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
|
|
|
|
|
317 |
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
|
318 |
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
|
319 |
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
|
|
|
320 |
with gr.Row():
|
321 |
submit = gr.Button("Uncrop", variant = "primary")
|
|
|
322 |
with gr.Row():
|
323 |
uncropped_image = gr.Image(label = "Uncropped image")
|
324 |
with gr.Row():
|
@@ -346,6 +364,8 @@ with gr.Blocks() as interface:
|
|
346 |
denoising_steps,
|
347 |
num_inference_steps,
|
348 |
guidance_scale,
|
|
|
|
|
349 |
randomize_seed,
|
350 |
seed,
|
351 |
debug_mode
|
@@ -362,6 +382,8 @@ with gr.Blocks() as interface:
|
|
362 |
denoising_steps,
|
363 |
num_inference_steps,
|
364 |
guidance_scale,
|
|
|
|
|
365 |
randomize_seed,
|
366 |
seed,
|
367 |
debug_mode
|
@@ -386,6 +408,8 @@ with gr.Blocks() as interface:
|
|
386 |
denoising_steps,
|
387 |
num_inference_steps,
|
388 |
guidance_scale,
|
|
|
|
|
389 |
randomize_seed,
|
390 |
seed,
|
391 |
debug_mode
|
@@ -410,6 +434,8 @@ with gr.Blocks() as interface:
|
|
410 |
1000,
|
411 |
50,
|
412 |
7,
|
|
|
|
|
413 |
True,
|
414 |
42,
|
415 |
False
|
@@ -426,6 +452,8 @@ with gr.Blocks() as interface:
|
|
426 |
1000,
|
427 |
50,
|
428 |
7,
|
|
|
|
|
429 |
True,
|
430 |
42,
|
431 |
False
|
@@ -442,6 +470,8 @@ with gr.Blocks() as interface:
|
|
442 |
1000,
|
443 |
50,
|
444 |
7,
|
|
|
|
|
445 |
True,
|
446 |
42,
|
447 |
False
|
|
|
30 |
denoising_steps,
|
31 |
num_inference_steps,
|
32 |
guidance_scale,
|
33 |
+
image_guidance_scale,
|
34 |
+
strength,
|
35 |
randomize_seed,
|
36 |
seed,
|
37 |
debug_mode,
|
|
|
74 |
denoising_steps,
|
75 |
num_inference_steps,
|
76 |
guidance_scale,
|
77 |
+
image_guidance_scale,
|
78 |
+
strength,
|
79 |
randomize_seed,
|
80 |
seed,
|
81 |
debug_mode,
|
|
|
92 |
denoising_steps,
|
93 |
num_inference_steps,
|
94 |
guidance_scale,
|
95 |
+
image_guidance_scale,
|
96 |
+
strength,
|
97 |
randomize_seed,
|
98 |
seed,
|
99 |
debug_mode
|
|
|
128 |
if guidance_scale is None:
|
129 |
guidance_scale = 7
|
130 |
|
131 |
+
if image_guidance_scale is None:
|
132 |
+
image_guidance_scale = 1.5
|
133 |
+
|
134 |
+
if strength is None:
|
135 |
+
strength = 0.99
|
136 |
+
|
137 |
if randomize_seed:
|
138 |
seed = random.randint(0, max_64_bit_int)
|
139 |
|
|
|
194 |
|
195 |
# Mask
|
196 |
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
|
197 |
+
black_mask = Image.new(mode = input_image.mode, size = (original_width - smooth_border, original_height - smooth_border), color = (0, 0, 0, 0))
|
198 |
mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), enlarge_top + (smooth_border // 2)))
|
199 |
mask_image = mask_image.filter(ImageFilter.BoxBlur((smooth_border // 2)))
|
200 |
|
|
|
238 |
mask_image = mask_image,
|
239 |
num_inference_steps = num_inference_steps,
|
240 |
guidance_scale = guidance_scale,
|
241 |
+
image_guidance_scale = image_guidance_scale,
|
242 |
+
strength = strength,
|
243 |
denoising_steps = denoising_steps,
|
244 |
show_progress_bar = True
|
245 |
).images[0]
|
|
|
322 |
with gr.Row():
|
323 |
prompt = gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image')
|
324 |
with gr.Row():
|
325 |
+
with gr.Accordion("Advanced options", open = False):
|
326 |
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
|
327 |
smooth_border = gr.Slider(minimum = 0, maximum = 1024, value = 0, step = 2, label = "Smooth border", info = "lower=preserve original, higher=seamless")
|
328 |
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
|
329 |
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
|
330 |
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
|
331 |
+
image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
|
332 |
+
strength = gr.Number(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area (discouraged), higher=redraw from scratch")
|
333 |
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
|
334 |
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
|
335 |
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
|
336 |
+
|
337 |
with gr.Row():
|
338 |
submit = gr.Button("Uncrop", variant = "primary")
|
339 |
+
|
340 |
with gr.Row():
|
341 |
uncropped_image = gr.Image(label = "Uncropped image")
|
342 |
with gr.Row():
|
|
|
364 |
denoising_steps,
|
365 |
num_inference_steps,
|
366 |
guidance_scale,
|
367 |
+
image_guidance_scale,
|
368 |
+
strength,
|
369 |
randomize_seed,
|
370 |
seed,
|
371 |
debug_mode
|
|
|
382 |
denoising_steps,
|
383 |
num_inference_steps,
|
384 |
guidance_scale,
|
385 |
+
image_guidance_scale,
|
386 |
+
strength,
|
387 |
randomize_seed,
|
388 |
seed,
|
389 |
debug_mode
|
|
|
408 |
denoising_steps,
|
409 |
num_inference_steps,
|
410 |
guidance_scale,
|
411 |
+
image_guidance_scale,
|
412 |
+
strength,
|
413 |
randomize_seed,
|
414 |
seed,
|
415 |
debug_mode
|
|
|
434 |
1000,
|
435 |
50,
|
436 |
7,
|
437 |
+
1.5,
|
438 |
+
0.99,
|
439 |
True,
|
440 |
42,
|
441 |
False
|
|
|
452 |
1000,
|
453 |
50,
|
454 |
7,
|
455 |
+
1.5,
|
456 |
+
0.99,
|
457 |
True,
|
458 |
42,
|
459 |
False
|
|
|
470 |
1000,
|
471 |
50,
|
472 |
7,
|
473 |
+
1.5,
|
474 |
+
0.99,
|
475 |
True,
|
476 |
42,
|
477 |
False
|