import gradio as gr from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap") def get_question(answer, context, max_length=64): input_text = "answer: %s context: %s " % (answer, context) features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=max_length) return tokenizer.decode(output[0]) examples = [["answer: 1948 context: The world's first piece of software was written by a computer scientist named Tom Kilburn in 1948."], ["answer: Tom Kilburn context: The world's first piece of software was written by a computer scientist named Tom Kilburn in 1948."]] demo = gr.Interface(fn=get_question, inputs=["text", "text"], outputs="text", title="Question Generator", examples=examples) demo.launch()