import gradio as gr from transformers import CLIPProcessor, CLIPModel, pipeline import torch from PIL import Image import scipy.io.wavfile # Load the MusicGen model musicgen = pipeline("text-to-audio", model="facebook/musicgen-small") # Load the StreetCLIP model model = CLIPModel.from_pretrained("geolocal/StreetCLIP") processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP") labels = ['Albania', 'Andorra', 'Argentina', 'Australia', 'Austria', 'Bangladesh', 'Belgium', 'Bermuda', 'Bhutan', 'Bolivia', 'Botswana', 'Brazil', 'Bulgaria', 'Cambodia', 'Canada', 'Chile', 'China', 'Colombia', 'Croatia', 'Czech Republic', 'Denmark', 'Dominican Republic', 'Egypt', 'Ecuador', 'Estonia', 'Finland', 'France', 'Germany', 'Ghana', 'Greece', 'Greenland', 'Guam', 'Guatemala', 'Hungary', 'Iceland', 'India', 'Indonesia', 'Ireland', 'Israel', 'Italy', 'Japan', 'Jordan', 'Kenya', 'Kyrgyzstan', 'Laos', 'Latvia', 'Lesotho', 'Lithuania', 'Luxembourg', 'Macedonia', 'Madagascar', 'Malaysia', 'Malta', 'Mexico', 'Monaco', 'Mongolia', 'Montenegro', 'Netherlands', 'New Zealand', 'Nigeria', 'Norway', 'Pakistan', 'Palestine', 'Peru', 'Philippines', 'Poland', 'Portugal', 'Puerto Rico', 'Romania', 'Russia', 'Rwanda','Saudi Arabia', 'Senegal', 'Serbia', 'Singapore', 'Slovakia', 'Slovenia', 'South Africa', 'South Korea', 'Spain', 'Sri Lanka', 'Swaziland', 'Sweden', 'Switzerland', 'Syria','Taiwan', 'Thailand', 'Tunisia', 'Turkey', 'Uganda', 'Ukraine', 'United Arab Emirates', 'United Kingdom', 'United States', 'Uruguay'] def process_image(image, audio_path="musicgen_out.wav"): # Ensure the image is in the correct format if isinstance(image, str): image = Image.open(image) # Process the image and text inputs inputs = processor(text=labels, images=image, return_tensors="pt", padding=True) # Get the model outputs with torch.no_grad(): outputs = model(**inputs) logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1) # Get the country with the highest probability country_index = probs.argmax(dim=1).item() country = labels[country_index] # Generate music based on the country music_description = f"Traditional music from {country}" music = musicgen(music_description, forward_params={"do_sample": True}) # Save the generated music to the specified path scipy.io.wavfile.write(audio_path, rate=music["sampling_rate"], data=music["audio"]) # Return the country and the path to the generated music return country, audio_path # Define the Gradio interface inputs = gr.Image(type="pil", label="Upload a photo (تحميل صورة)") outputs = [gr.Textbox(label="Country (البلد)"), gr.Audio(label="Generated Music (الموسيقى المولدة)")] iface = gr.Interface( fn=process_image, inputs=inputs, outputs=outputs, title="Photo to Country and Music Generator محدد الموقع من الصور بالاضافة الى انشاء م", description="Upload a photo to identify the country and generate traditional music from that country. (قم بتحميل صورة لتحديد البلد وإنشاء موسيقى تقليدية من هذا البلد.)", examples=["/content/Egypt.jfif", "/content/Riyadh.jpeg", "/content/Syria.jfif", "/content/Turkey.jfif"] ) # Launch the interface iface.launch(debug=True)