Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.data | |
import torchvision.transforms as transforms | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from PIL import Image | |
import clip | |
import numpy as np | |
import cv2 | |
import gradio as gr | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def top_filtering(logits, top_k=0., top_p=0.9, threshold=-float('Inf'), filter_value=-float('Inf')): | |
assert logits.dim() == 1 # Only work for batch size 1 for now - could update but it would obfuscate a bit the code | |
top_k = min(top_k, logits.size(-1)) | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token in the top-k tokens | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
# Compute cumulative probabilities of sorted tokens | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probabilities = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probabilities > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
# Back to unsorted indices and set them to -infinity | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[indices_to_remove] = filter_value | |
indices_to_remove = logits < threshold | |
logits[indices_to_remove] = filter_value | |
return logits | |
class ImageEncoder(nn.Module): | |
def __init__(self): | |
super(ImageEncoder, self).__init__() | |
self.encoder, _ = clip.load("ViT-B/16", device=device) # loads already in eval mode | |
def forward(self, x): | |
""" | |
Expects a tensor of size (batch_size, 3, 224, 224) | |
""" | |
with torch.no_grad(): | |
x = x.type(self.encoder.visual.conv1.weight.dtype) | |
x = self.encoder.visual.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat([self.encoder.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.encoder.visual.positional_embedding.to(x.dtype) | |
x = self.encoder.visual.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.encoder.visual.transformer(x) | |
grid_feats = x.permute(1, 0, 2) # LND -> NLD (N, 197, 768) | |
grid_feats = self.encoder.visual.ln_post(grid_feats[:,1:]) | |
return grid_feats.float() | |
def change_requires_grad(model, req_grad): | |
for p in model.parameters(): | |
p.requires_grad = req_grad | |
def load_checkpoint(ckpt_path, epoch): | |
model_name = 'nle_model_{}'.format(str(epoch)) | |
tokenizer_name = 'nle_gpt2_tokenizer_0' | |
tokenizer = GPT2Tokenizer.from_pretrained(ckpt_path + tokenizer_name) # load tokenizer | |
model = GPT2LMHeadModel.from_pretrained(ckpt_path + model_name).to(device) # load model with config | |
return tokenizer, model | |
def sample_sequences(img, model, input_ids, segment_ids, tokenizer): | |
SPECIAL_TOKENS = ['<|endoftext|>', '<pad>', '<question>', '<answer>', '<explanation>'] | |
special_tokens_ids = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS) | |
because_token = tokenizer.convert_tokens_to_ids('Δ because') | |
max_len = 20 | |
current_output = [] | |
img_embeddings = image_encoder(img) | |
always_exp = False | |
with torch.no_grad(): | |
for step in range(max_len + 1): | |
if step == max_len: | |
break | |
outputs = model(input_ids=input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=segment_ids, | |
position_ids=None, | |
encoder_hidden_states=img_embeddings, | |
encoder_attention_mask=None, | |
labels=None, | |
use_cache=False, | |
output_attentions=True, | |
return_dict=True) | |
lm_logits = outputs.logits | |
xa_maps = outputs.cross_attentions | |
logits = lm_logits[0, -1, :] / temperature | |
logits = top_filtering(logits, top_k=top_k, top_p=top_p) | |
probs = F.softmax(logits, dim=-1) | |
prev = torch.topk(probs, 1)[1] if no_sample else torch.multinomial(probs, 1) | |
if prev.item() in special_tokens_ids: | |
break | |
# take care of when to start the <explanation> token. Nasty code in here (i hate lots of ifs) | |
if not always_exp: | |
if prev.item() != because_token: | |
new_segment = special_tokens_ids[-2] # answer segment | |
else: | |
new_segment = special_tokens_ids[-1] # explanation segment | |
always_exp = True | |
else: | |
new_segment = special_tokens_ids[-1] # explanation segment | |
new_segment = torch.LongTensor([new_segment]).to(device) | |
current_output.append(prev.item()) | |
input_ids = torch.cat((input_ids, prev.unsqueeze(0)), dim = 1) | |
segment_ids = torch.cat((segment_ids, new_segment.unsqueeze(0)), dim = 1) | |
decoded_sequences = tokenizer.decode(current_output, skip_special_tokens=True).lstrip() | |
return decoded_sequences, xa_maps | |
def get_inputs(tokenizer): | |
a_segment_id, e_segment_id = tokenizer.convert_tokens_to_ids(['<answer>', '<explanation>']) | |
tokens = [tokenizer.bos_token] + tokenizer.tokenize("the answer is") | |
segment_ids = [a_segment_id] * len(tokens) | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
input_ids = torch.tensor(input_ids, dtype=torch.long) | |
segment_ids = torch.tensor(segment_ids, dtype=torch.long) | |
return input_ids.unsqueeze(0).to(device), segment_ids.unsqueeze(0).to(device) | |
img_size = 224 | |
ckpt_path = 'ACTX_p/' | |
max_seq_len = 30 | |
load_from_epoch = 5 | |
no_sample = True | |
top_k = 0 | |
top_p = 0.9 | |
temperature = 1 | |
image_encoder = ImageEncoder().to(device) | |
change_requires_grad(image_encoder, False) | |
tokenizer, model = load_checkpoint(ckpt_path, load_from_epoch) | |
model.eval() | |
img_transform = transforms.Compose([transforms.Resize((img_size,img_size)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) | |
def inference(raw_image): | |
oimg = raw_image.convert('RGB').resize((224,224)) | |
img = img_transform(oimg).unsqueeze(0).to(device) | |
input_ids, segment_ids = get_inputs(tokenizer) | |
seq, xa_maps = sample_sequences(img, model, input_ids, segment_ids, tokenizer) | |
last_am = xa_maps[-1].mean(1)[0] | |
mask = last_am[0, :].reshape(14,14).cpu().numpy() | |
mask = cv2.resize(mask / mask.max(), oimg.size)[..., np.newaxis] | |
attention_map = (mask * oimg).astype("uint8") | |
splitted_seq = seq.split("because") | |
return splitted_seq[0].strip(), "because " + splitted_seq[-1].strip(), Image.fromarray(attention_map) | |
inputs = [gr.inputs.Image(type='pil', label="Load the image of your interest")] | |
outputs = [gr.outputs.Textbox(label="What action is this?"), gr.outputs.Textbox(label="Textual Explanation"), gr.outputs.Image(type='pil', label="Visual Explanation")] | |
title = "NLX-GPT: Explanations with Natural Text (Action Recognition Demo)" | |
gr.Interface(inference, inputs, outputs, title=title).launch() | |
# | |