Spaces:
Sleeping
Sleeping
Add application file
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from PIL import Image
|
|
|
|
| 3 |
|
| 4 |
st.title("Image to Text Converter")
|
| 5 |
|
|
@@ -7,15 +8,41 @@ st.title("Image to Text Converter")
|
|
| 7 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 8 |
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
if uploaded_image is not None:
|
| 11 |
# Display the uploaded image
|
| 12 |
-
image = Image.open(uploaded_image)
|
| 13 |
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
# Extract text from the image
|
| 16 |
st.write("Extracting text from the image...")
|
| 17 |
# Display the extracted text
|
| 18 |
-
st.text_area("
|
| 19 |
|
| 20 |
|
| 21 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from PIL import Image
|
| 3 |
+
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
|
| 4 |
|
| 5 |
st.title("Image to Text Converter")
|
| 6 |
|
|
|
|
| 8 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 9 |
|
| 10 |
|
| 11 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained("Fer14/paligemma_coffe_describer")
|
| 12 |
+
processor = PaliGemmaProcessor.from_pretrained("Fer14/paligemma_coffe_describer")
|
| 13 |
+
|
| 14 |
+
prompt = (
|
| 15 |
+
f"Generate a caption for the following coffee maker image. The caption has to be of the following structure:\n"
|
| 16 |
+
"\"A <color> <type>, <accessories>, <shape> shaped, with <screen> and <number> <b_color> butons\"\n\n"
|
| 17 |
+
"in which:\n"
|
| 18 |
+
"- color: red, black, blue...\n"
|
| 19 |
+
"- type: coffee machine, coffee maker, espresso coffee machine...\n"
|
| 20 |
+
"- accessories: a list of accessories like the ones described above\n"
|
| 21 |
+
"- shape: cubed, round...\n"
|
| 22 |
+
"- screen: screen, no screen.\n"
|
| 23 |
+
"- number: amount of buttons to add\n"
|
| 24 |
+
"- b_color: color of the buttons"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
if uploaded_image is not None:
|
| 28 |
# Display the uploaded image
|
| 29 |
+
image = Image.open(uploaded_image).convert("RGB")
|
| 30 |
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
| 31 |
+
|
| 32 |
+
inputs = processor(
|
| 33 |
+
text=prompt,
|
| 34 |
+
images=image,
|
| 35 |
+
return_tensors="pt",
|
| 36 |
+
padding="longest",
|
| 37 |
+
)
|
| 38 |
|
| 39 |
+
output = model.generate(**inputs, max_length=1000)
|
| 40 |
+
out = processor.decode(output[0], skip_special_tokens=True)[len(prompt) :]
|
| 41 |
+
|
| 42 |
# Extract text from the image
|
| 43 |
st.write("Extracting text from the image...")
|
| 44 |
# Display the extracted text
|
| 45 |
+
st.text_area("Coffe machine description", out, height=300)
|
| 46 |
|
| 47 |
|
| 48 |
|