import gradio as gr import torch from diffusers import DiffusionPipeline from accelerate import init_empty_weights, load_checkpoint_and_dispatch # Detección y configuración del dispositivo para compatibilidad con GPU o CPU if torch.cuda.is_available(): device = "cuda" # Para GPUs NVIDIA elif hasattr(torch.backends, "mps") and torch.backends.mps.is_built(): device = "mps" # Para GPUs Apple Silicon (M1/M2) y otras GPUs con soporte Metal elif hasattr(torch.backends, "rocm") and torch.backends.rocm.is_available(): device = "rocm" # Para GPUs AMD con ROCm, si está disponible else: device = "cpu" # En caso de no tener GPU disponible # Definir el tipo de dato, usando bfloat16 si es compatible, si no, usar float32 dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 # Inicializar el modelo solo una vez y cargarlo en RAM y GPU/CPU pipe = None def load_model(): global pipe if pipe is None: # Inicializar ZeroGPU antes de cargar el modelo init_empty_weights() # Cargar el modelo y configurarlo para usar el dispositivo adecuado pipe = DiffusionPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype ) # Despachar los pesos al dispositivo adecuado (GPU o CPU) pipe = load_checkpoint_and_dispatch( pipe, "black-forest-labs/FLUX.1-schnell", device_map="auto", # Automatiza el uso de RAM, GPU o CPU offload_folder=None # Evita que se almacenen los pesos temporalmente en el disco ) pipe.to(device) MAX_SEED = torch.iinfo(torch.int32).max def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=1): load_model() # Asegurarse de que el modelo esté cargado antes de la inferencia if randomize_seed: seed = torch.randint(0, MAX_SEED, (1,)).item() generator = torch.Generator(device).manual_seed(seed) images = [] for _ in range(num_images): image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] images.append(image) return images, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [schnell] 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False ) run_button = gr.Button("Run", scale=0) # Usamos gr.Gallery para mostrar múltiples imágenes results = gr.Gallery(label="Results", show_label=False, elem_id="image-gallery") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=2048, # Ajusta el tamaño máximo según sea necesario step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=2048, # Ajusta el tamaño máximo según sea necesario step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) # Control para el número de imágenes a generar num_images = gr.Slider( label="Number of images", minimum=1, maximum=10, # Ajusta el número máximo de imágenes según sea necesario step=1, value=1, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [results, seed], cache_examples="lazy" ) # Conectar el botón y el campo de texto a la función infer run_button.click( fn=infer, inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, num_images], outputs=[results, seed] ) # Crear un enlace público con share=True demo.launch(share=True)