File size: 19,910 Bytes
a5d12c2
3ae460d
 
a5d12c2
3ae460d
a5d12c2
1c1ba7e
 
3ae460d
a5d12c2
3ae460d
1c1ba7e
3ae460d
 
 
 
 
a5d12c2
3ae460d
 
 
 
 
 
1c1ba7e
 
9e7fd56
3ae460d
 
5fade1f
3ae460d
1c1ba7e
3ae460d
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
1811735
3ae460d
1811735
3ae460d
1811735
3ae460d
1811735
3ae460d
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
 
 
 
a5d12c2
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
1c1ba7e
 
3ae460d
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
1654627
3ae460d
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
 
 
1c1ba7e
3ae460d
1c1ba7e
 
3ae460d
 
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
 
 
1c1ba7e
3ae460d
 
 
 
 
1c1ba7e
94334a3
 
3ae460d
 
 
1c1ba7e
1811735
3ae460d
94334a3
3ae460d
94334a3
3ae460d
94334a3
3ae460d
 
1c1ba7e
3ae460d
 
1c1ba7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae460d
 
 
1c1ba7e
3ae460d
94334a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import os
import uuid
import redis
import torch
import scipy
from transformers import (
    pipeline, AutoTokenizer, AutoModelForCausalLM, AutoProcessor,
    MusicgenForConditionalGeneration, WhisperProcessor, WhisperForConditionalGeneration,
    MarianMTModel, MarianTokenizer, BartTokenizer, BartForConditionalGeneration
)
from diffusers import (
    FluxPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler,
    StableDiffusionImg2ImgPipeline, DiffusionPipeline
)
from diffusers.utils import export_to_video
from datasets import load_dataset
from PIL import Image
import gradio as gr
from dotenv import load_dotenv
import multiprocessing

load_dotenv()

redis_client = redis.Redis(
    host=os.getenv('REDIS_HOST'),
    port=os.getenv('REDIS_PORT'),
    password=os.getenv("REDIS_PASSWORD")
)

huggingface_token = os.getenv('HF_TOKEN')


def generate_unique_id():
    return str(uuid.uuid4())


def store_special_tokens(tokenizer, model_name):
    special_tokens = {
        'pad_token': tokenizer.pad_token,
        'pad_token_id': tokenizer.pad_token_id,
        'eos_token': tokenizer.eos_token,
        'eos_token_id': tokenizer.eos_token_id,
        'unk_token': tokenizer.unk_token,
        'unk_token_id': tokenizer.unk_token_id,
        'bos_token': tokenizer.bos_token,
        'bos_token_id': tokenizer.bos_token_id
    }
    redis_client.hmset(f"tokenizer_special_tokens:{model_name}", special_tokens)


def load_special_tokens(tokenizer, model_name):
    special_tokens = redis_client.hgetall(f"tokenizer_special_tokens:{model_name}")
    if special_tokens:
        tokenizer.pad_token = special_tokens.get('pad_token', '').decode("utf-8")
        tokenizer.pad_token_id = int(special_tokens.get('pad_token_id', -1))
        tokenizer.eos_token = special_tokens.get('eos_token', '').decode("utf-8")
        tokenizer.eos_token_id = int(special_tokens.get('eos_token_id', -1))
        tokenizer.unk_token = special_tokens.get('unk_token', '').decode("utf-8")
        tokenizer.unk_token_id = int(special_tokens.get('unk_token_id', -1))
        tokenizer.bos_token = special_tokens.get('bos_token', '').decode("utf-8")
        tokenizer.bos_token_id = int(special_tokens.get('bos_token_id', -1))


def train_and_store_transformers_model(model_name, data):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    model.train()
    store_special_tokens(tokenizer, model_name)
    torch.save(model.state_dict(), "transformers_model.pt")
    with open("transformers_model.pt", "rb") as f:
        model_data = f.read()
    redis_client.set(f"transformers_model:{model_name}:state_dict", model_data)
    tokenizer_data = tokenizer.save_pretrained("transformers_tokenizer")
    redis_client.set(f"transformers_tokenizer:{model_name}", tokenizer_data)


def generate_transformers_response_from_redis(model_name, prompt):
    unique_id = generate_unique_id()
    model_data = redis_client.get(f"transformers_model:{model_name}:state_dict")
    with open("transformers_model.pt", "wb") as f:
        f.write(model_data)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    model.load_state_dict(torch.load("transformers_model.pt"))
    tokenizer_data = redis_client.get(f"transformers_tokenizer:{model_name}")
    tokenizer = AutoTokenizer.from_pretrained("transformers_tokenizer")
    load_special_tokens(tokenizer, model_name)
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(inputs.input_ids, max_length=50)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    redis_client.set(f"transformers_response:{unique_id}", response)
    return response


def train_and_store_diffusers_model(model_name, data):
    pipe = FluxPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)
    pipe.enable_model_cpu_offload()
    pipe.train()
    pipe.save_pretrained("diffusers_model")
    with open("diffusers_model/flux_pipeline.pt", "rb") as f:
        model_data = f.read()
    redis_client.set(f"diffusers_model:{model_name}", model_data)


def generate_diffusers_image_from_redis(model_name, prompt):
    unique_id = generate_unique_id()
    model_data = redis_client.get(f"diffusers_model:{model_name}")
    with open("diffusers_model/flux_pipeline.pt", "wb") as f:
        f.write(model_data)
    pipe = FluxPipeline.from_pretrained("diffusers_model", torch_dtype=torch.bfloat16)
    pipe.enable_model_cpu_offload()
    image = pipe(prompt, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256,
                  generator=torch.Generator("cpu").manual_seed(0)).images[0]
    image_path = f"images/diffusers_{unique_id}.png"
    image.save(image_path)
    redis_client.set(f"diffusers_image:{unique_id}", image_path)
    return image


def train_and_store_musicgen_model(model_name, data):
    processor = AutoProcessor.from_pretrained(model_name)
    model = MusicgenForConditionalGeneration.from_pretrained(model_name)
    model.train()
    torch.save(model.state_dict(), "musicgen_model.pt")
    with open("musicgen_model.pt", "rb") as f:
        model_data = f.read()
    redis_client.set(f"musicgen_model:{model_name}:state_dict", model_data)
    processor_data = processor.save_pretrained("musicgen_processor")
    redis_client.set(f"musicgen_processor:{model_name}", processor_data)


def generate_musicgen_audio_from_redis(model_name, text_prompts):
    unique_id = generate_unique_id()
    model_data = redis_client.get(f"musicgen_model:{model_name}:state_dict")
    with open("musicgen_model.pt", "wb") as f:
        f.write(model_data)
    model = MusicgenForConditionalGeneration.from_pretrained(model_name)
    model.load_state_dict(torch.load("musicgen_model.pt"))
    processor_data = redis_client.get(f"musicgen_processor:{model_name}")
    processor = AutoProcessor.from_pretrained("musicgen_processor")
    inputs = processor(text=text_prompts, padding=True, return_tensors="pt")
    audio_values = model.generate(**inputs, max_new_tokens=256)
    audio_path = f"audio/musicgen_{unique_id}.wav"
    scipy.io.wavfile.write(audio_path, rate=audio_values["sampling_rate"], data=audio_values["audio"])
    redis_client.set(f"musicgen_audio:{unique_id}", audio_path)
    return audio_path


def train_and_store_stable_diffusion_model(model_name, data):
    pipe = StableDiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
    pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    pipe = pipe.to("cuda")
    pipe.train()
    pipe.save_pretrained("stable_diffusion_model")
    with open("stable_diffusion_model/stable_diffusion_pipeline.pt", "rb") as f:
        model_data = f.read()
    redis_client.set(f"stable_diffusion_model:{model_name}", model_data)


def generate_stable_diffusion_image_from_redis(model_name, prompt):
    unique_id = generate_unique_id()
    model_data = redis_client.get(f"stable_diffusion_model:{model_name}")
    with open("stable_diffusion_model/stable_diffusion_pipeline.pt", "wb") as f:
        f.write(model_data)
    pipe = StableDiffusionPipeline.from_pretrained("stable_diffusion_model", torch_dtype=torch.float16)
    pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    pipe = pipe.to("cuda")
    image = pipe(prompt).images[0]
    image_path = f"images/stable_diffusion_{unique_id}.png"
    image.save(image_path)
    redis_client.set(f"stable_diffusion_image:{unique_id}", image_path)
    return image


def train_and_store_img2img_model(model_name, data):
    pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_name, torch_dtype=torch.float16)
    pipe = pipe.to("cuda")
    pipe.train()
    pipe.save_pretrained("img2img_model")
    with open("img2img_model/img2img_pipeline.pt", "rb") as f:
        model_data = f.read()
    redis_client.set(f"img2img_model:{model_name}", model_data)


def generate_img2img_from_redis(model_name, init_image, prompt, strength=0.75):
    unique_id = generate_unique_id()
    model_data = redis_client.get(f"img2img_model:{model_name}")
    with open("img2img_model/img2img_pipeline.pt", "wb") as f:
        f.write(model_data)
    pipe = StableDiffusionImg2ImgPipeline.from_pretrained("img2img_model", torch_dtype=torch.float16)
    pipe = pipe.to("cuda")
    init_image = Image.open(init_image).convert("RGB")
    image = pipe(prompt=prompt, init_image=init_image, strength=strength).images[0]
    image_path = f"images/img2img_{unique_id}.png"
    image.save(image_path)
    redis_client.set(f"img2img_image:{unique_id}", image_path)
    return image


def train_and_store_marianmt_model(model_name, data):
    tokenizer = MarianTokenizer.from_pretrained(model_name)
    model = MarianMTModel.from_pretrained(model_name)
    model.train()
    torch.save(model.state_dict(), "marianmt_model.pt")
    with open("marianmt_model.pt", "rb") as f:
        model_data = f.read()
    redis_client.set(f"marianmt_model:{model_name}:state_dict", model_data)
    tokenizer_data = tokenizer.save_pretrained("marianmt_tokenizer")
    redis_client.set(f"marianmt_tokenizer:{model_name}", tokenizer_data)


def translate_text_from_redis(model_name, text, src_lang, tgt_lang):
    unique_id = generate_unique_id()
    model_data = redis_client.get(f"marianmt_model:{model_name}:state_dict")
    with open("marianmt_model.pt", "wb") as f:
        f.write(model_data)
    model = MarianMTModel.from_pretrained(model_name)
    model.load_state_dict(torch.load("marianmt_model.pt"))
    tokenizer_data = redis_client.get(f"marianmt_tokenizer:{model_name}")
    tokenizer = MarianTokenizer.from_pretrained("marianmt_tokenizer")
    inputs = tokenizer(text, return_tensors="pt", src_lang=src_lang, tgt_lang=tgt_lang)
    translated_tokens = model.generate(**inputs)
    translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
    redis_client.set(f"marianmt_translation:{unique_id}", translation)
    return translation


def train_and_store_bart_model(model_name, data):
    tokenizer = BartTokenizer.from_pretrained(model_name)
    model = BartForConditionalGeneration.from_pretrained(model_name)
    model.train()
    torch.save(model.state_dict(), "bart_model.pt")
    with open("bart_model.pt", "rb") as f:
        model_data = f.read()
    redis_client.set(f"bart_model:{model_name}:state_dict", model_data)
    tokenizer_data = tokenizer.save_pretrained("bart_tokenizer")
    redis_client.set(f"bart_tokenizer:{model_name}", tokenizer_data)


def summarize_text_from_redis(model_name, text):
    unique_id = generate_unique_id()
    model_data = redis_client.get(f"bart_model:{model_name}:state_dict")
    with open("bart_model.pt", "wb") as f:
        f.write(model_data)
    model = BartForConditionalGeneration.from_pretrained(model_name)
    model.load_state_dict(torch.load("bart_model.pt"))
    tokenizer_data = redis_client.get(f"bart_tokenizer:{model_name}")
    tokenizer = BartTokenizer.from_pretrained("bart_tokenizer")
    load_special_tokens(tokenizer, model_name)
    inputs = tokenizer(text, return_tensors="pt", truncation=True)
    summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4)
    summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    redis_client.set(f"bart_summary:{unique_id}", summary)
    return summary


def auto_train_and_store(model_name, task, data):
    if task == "text-generation":
        train_and_store_transformers_model(model_name, data)
    elif task == "diffusers":
        train_and_store_diffusers_model(model_name, data)
    elif task == "musicgen":
        train_and_store_musicgen_model(model_name, data)
    elif task == "stable-diffusion":
        train_and_store_stable_diffusion_model(model_name, data)
    elif task == "img2img":
        train_and_store_img2img_model(model_name, data)
    elif task == "translation":
        train_and_store_marianmt_model(model_name, data)
    elif task == "summarization":
        train_and_store_bart_model(model_name, data)


def transcribe_audio_from_redis(audio_file):
    audio_file_path = "audio_file.wav"
    with open(audio_file_path, "wb") as f:
        f.write(audio_file)
    processor = WhisperProcessor.from_pretrained("openai/whisper-small")
    model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
    model.config.forced_decoder_ids = None
    input_features = processor(audio_file, sampling_rate=16000, return_tensors="pt").input_features
    predicted_ids = model.generate(input_features)
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
    return transcription[0]


def generate_image_from_redis(model_name, prompt, model_type):
    if model_type == "diffusers":
        image = generate_diffusers_image_from_redis(model_name, prompt)
    elif model_type == "stable-diffusion":
        image = generate_stable_diffusion_image_from_redis(model_name, prompt)
    elif model_type == "img2img":
        image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
    return image


def generate_video_from_redis(prompt):
    pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16,
                                             variant="fp16")
    pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    pipe.enable_model_cpu_offload()
    video_frames = pipe(prompt, num_inference_steps=25).frames
    video_path = export_to_video(video_frames)
    unique_id = generate_unique_id()
    redis_client.set(f"video_{unique_id}", video_path)
    return video_path


def generate_random_response(prompts, generator):
    responses = []
    for prompt in prompts:
        response = generator(prompt, max_length=50)[0]['generated_text']
        responses.append(response)
    return responses


def process_parallel(tasks):
    with multiprocessing.Pool() as pool:
        results = pool.map(lambda task: task(), tasks)
    return results


def generate_response_from_prompt(prompt, model_name="google/flan-t5-xl"):
    generator = pipeline('text-generation', model=model_name, tokenizer=model_name)
    responses = generate_random_response([prompt], generator)
    return responses[0]


def generate_image_from_prompt(prompt, image_type, model_name="CompVis/stable-diffusion-v1-4"):
    if image_type == "diffusers":
        image = generate_diffusers_image_from_redis(model_name, prompt)
    elif image_type == "stable-diffusion":
        image = generate_stable_diffusion_image_from_redis(model_name, prompt)
    elif image_type == "img2img":
        image = generate_img2img_from_redis(model_name, "init_image.png", prompt)
    return image


def gradio_app():
    with gr.Blocks() as app:
        gr.Markdown(
            """
            # IA Generativa con Transformers y Diffusers
            Explora diferentes modelos de IA para generar texto, im谩genes, audio, video y m谩s.
            """
        )

        with gr.Tab("Texto"):
            with gr.Row():
                with gr.Column():
                    prompt_text = gr.Textbox(label="Texto de Entrada", placeholder="Ingresa tu prompt de texto aqu铆...")
                    text_button = gr.Button("Generar Texto", variant="primary")
                with gr.Column():
                    text_output = gr.Textbox(label="Respuesta")
            text_button.click(generate_response_from_prompt, inputs=prompt_text, outputs=text_output)

        with gr.Tab("Imagen"):
            with gr.Row():
                with gr.Column():
                    prompt_image = gr.Textbox(label="Prompt de Imagen",
                                             placeholder="Ingresa tu prompt de imagen aqu铆...")
                    image_type = gr.Dropdown(["diffusers", "stable-diffusion", "img2img"], label="Tipo de Modelo",
                                            value="stable-diffusion")
                    model_name_image = gr.Textbox(label="Nombre del Modelo",
                                                  value="CompVis/stable-diffusion-v1-4")
                    image_button = gr.Button("Generar Imagen", variant="primary")
                with gr.Column():
                    image_output = gr.Image(label="Imagen Generada")
            image_button.click(generate_image_from_prompt, inputs=[prompt_image, image_type, model_name_image],
                               outputs=image_output)

        with gr.Tab("Video"):
            with gr.Row():
                with gr.Column():
                    prompt_video = gr.Textbox(label="Prompt de Video", placeholder="Ingresa tu prompt de video aqu铆...")
                    video_button = gr.Button("Generar Video", variant="primary")
                with gr.Column():
                    video_output = gr.Video(label="Video Generado")
            video_button.click(generate_video_from_redis, inputs=prompt_video, outputs=video_output)

        with gr.Tab("Audio"):
            with gr.Row():
                with gr.Column():
                    model_name_audio = gr.Textbox(label="Nombre del Modelo", value="facebook/musicgen-small")
                    text_prompts_audio = gr.Textbox(label="Prompts de Audio",
                                                   placeholder="Ingresa tus prompts de audio aqu铆...")
                    audio_button = gr.Button("Generar Audio", variant="primary")
                with gr.Column():
                    audio_output = gr.Audio(label="Audio Generado")
            audio_button.click(generate_musicgen_audio_from_redis, inputs=[model_name_audio, text_prompts_audio],
                               outputs=audio_output)

        with gr.Tab("Transcripci贸n"):
            with gr.Row():
                with gr.Column():
                    audio_file = gr.Audio(type="filepath", label="Archivo de Audio")
                    audio_button = gr.Button("Transcribir Audio", variant="primary")
                with gr.Column():
                    transcription_output = gr.Textbox(label="Transcripci贸n")
            audio_button.click(transcribe_audio_from_redis, inputs=audio_file, outputs=transcription_output)

        with gr.Tab("Traducci贸n"):
            with gr.Row():
                with gr.Column():
                    model_name_translate = gr.Textbox(label="Nombre del Modelo", value="Helsinki-NLP/opus-mt-en-es")
                    text_input = gr.Textbox(label="Texto a Traducir", placeholder="Ingresa el texto a traducir...")
                    src_lang_input = gr.Textbox(label="Idioma de Origen", value="en")
                    tgt_lang_input = gr.Textbox(label="Idioma de Destino", value="es")
                    translate_button = gr.Button("Traducir Texto", variant="primary")
                with gr.Column():
                    translation_output = gr.Textbox(label="Traducci贸n")
            translate_button.click(translate_text_from_redis,
                                   inputs=[model_name_translate, text_input, src_lang_input, tgt_lang_input],
                                   outputs=translation_output)

        with gr.Tab("Resumen"):
            with gr.Row():
                with gr.Column():
                    model_name_summarize = gr.Textbox(label="Nombre del Modelo", value="facebook/bart-large-cnn")
                    text_to_summarize = gr.Textbox(label="Texto para Resumir",
                                                  placeholder="Ingresa el texto a resumir...")
                    summarize_button = gr.Button("Generar Resumen", variant="primary")
                with gr.Column():
                    summary_output = gr.Textbox(label="Resumen")
            summarize_button.click(summarize_text_from_redis, inputs=[model_name_summarize, text_to_summarize],
                                   outputs=summary_output)

    app.launch()


if __name__ == "__main__":
    gradio_app()