Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
""" | |
Created on Thu Feb 8 13:00:08 2024 | |
@author: firis | |
""" | |
import gradio as gr | |
import os | |
import torch | |
from model import create_eff_model | |
from timeit import default_timer as timer | |
class_names=["pizza","steak","sushi"] | |
eff_model,eff_model_transform=create_eff_model() #bu standart model | |
eff_model_dict=torch.load("20_percent_data_effnet1.pth") | |
eff_model.load_state_dict(eff_model_dict) | |
eff_model.to("cpu") | |
#prediction function | |
def predict(img): | |
start_time = timer() | |
img=eff_model_transform(img).unsqueeze(0) | |
eff_model.eval() | |
with torch.inference_mode(): | |
pred_and_probs=torch.softmax(eff_model(img),dim=1) | |
class_with_pred_dict={cl:float(pred_and_probs[0][ind]) for ind,cl in enumerate(class_names)} | |
pred_time = round(timer() - start_time, 5) | |
return class_with_pred_dict, pred_time | |
############# Gradio Interface ########## | |
title = "FoodVision Mini ππ₯©π£" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.Image(type="pil"), # what are the inputs? | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? | |
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
examples=example_list, | |
title=title, | |
description=description) | |
# Launch the demo! | |
demo.launch(debug=False, # print errors locally? | |
share=True) | |