import gradio as gr from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig from PIL import Image import torch import spaces # Load the processor and model processor = AutoProcessor.from_pretrained( 'allenai/Molmo-7B-O-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) model = AutoModelForCausalLM.from_pretrained( 'allenai/Molmo-7B-O-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) @spaces.GPU(duration=120) def process_image_and_text(image, text): # Process the image and text inputs = processor.process( images=[Image.fromarray(image)], text=text ) # Move inputs to the correct device and make a batch of size 1 inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} # Generate output output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer ) # Only get generated tokens; decode them to text generated_tokens = output[0, inputs['input_ids'].size(1):] generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) return generated_text def chatbot(image, text, history): if image is None: return history + [("Please upload an image first.", None)] response = process_image_and_text(image, text) history.append((text, response)) return history # Define the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Image Chatbot with Molmo-7B-O-0924") with gr.Row(): image_input = gr.Image(type="numpy") chatbot_output = gr.Chatbot() text_input = gr.Textbox(placeholder="Ask a question about the image...") submit_button = gr.Button("Submit") state = gr.State([]) submit_button.click( chatbot, inputs=[image_input, text_input, state], outputs=[chatbot_output] ) text_input.submit( chatbot, inputs=[image_input, text_input, state], outputs=[chatbot_output] ) demo.launch()