KingNish commited on
Commit
3ce81f3
·
verified ·
1 Parent(s): b9a20a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -19
app.py CHANGED
@@ -2,29 +2,142 @@ import gradio as gr
2
  import numpy as np
3
  import random
4
  from diffusers import DiffusionPipeline
5
- from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
6
  import torch
7
  import spaces
8
 
9
- pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda")
10
 
11
- @spaces.GPU(duration=50)
12
- def generate_image(prompt, negative_prompt):
13
- # Run the diffusion model to generate an image
14
- output = pipe(prompt, negative_prompt, num_inference_steps=7, guidance_scale=3.5)
15
- return output.images[0]
 
 
 
16
 
17
- prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image", placeholder = "Describe what you want to see", lines = 2)
18
- negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see", value = "Ugly, malformed, noise, blur, watermark")
19
 
20
- gr_interface = gr.Interface(
21
- fn=generate_image,
22
- inputs=[prompt, negative_prompt],
23
- outputs="image",
24
- title="Real-time Image Generation with Diffusion",
25
- description="Enter a prompt to generate an image",
26
- theme="soft"
27
- )
28
 
29
- # Launch the Gradio app
30
- gr_interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import numpy as np
3
  import random
4
  from diffusers import DiffusionPipeline
 
5
  import torch
6
  import spaces
7
 
8
+ device = "cuda" if torch.cuda.is_available() else "cpu"
9
 
10
+ if torch.cuda.is_available():
11
+ torch.cuda.max_memory_allocated(device=device)
12
+ pipe = DiffusionPipeline.from_pretrained("sd-community/sdxl-flash", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
13
+ pipe.enable_xformers_memory_efficient_attention()
14
+ pipe = pipe.to(device)
15
+ else:
16
+ pipe = DiffusionPipeline.from_pretrained("sd-community/sdxl-flash", use_safetensors=True)
17
+ pipe = pipe.to(device)
18
 
19
+ MAX_SEED = np.iinfo(np.int32).max
20
+ MAX_IMAGE_SIZE = 1024
21
 
22
+ @spaces.GPU(duration=20,queue=False)
23
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
 
 
 
24
 
25
+ if randomize_seed:
26
+ seed = random.randint(0, MAX_SEED)
27
+
28
+ generator = torch.Generator().manual_seed(seed)
29
+
30
+ image = pipe(
31
+ prompt = prompt,
32
+ negative_prompt = negative_prompt,
33
+ guidance_scale = guidance_scale,
34
+ num_inference_steps = num_inference_steps,
35
+ width = width,
36
+ height = height,
37
+ generator = generator
38
+ ).images[0]
39
+
40
+ return image
41
+
42
+ examples = [
43
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
+ "An astronaut riding a green horse",
45
+ "A delicious ceviche cheesecake slice",
46
+ ]
47
+
48
+ css="""
49
+ #col-container {
50
+ margin: 0 auto;
51
+ max-width: 520px;
52
+ }
53
+ """
54
+
55
+ with gr.Blocks(css=css) as demo:
56
+
57
+ with gr.Column(elem_id="col-container"):
58
+ gr.Markdown(f"""
59
+ # Text-to-Image Gradio Template
60
+ Currently running on {power_device}.
61
+ """)
62
+
63
+ with gr.Row():
64
+
65
+ prompt = gr.Text(
66
+ label="Prompt",
67
+ show_label=False,
68
+ max_lines=1,
69
+ placeholder="Enter your prompt",
70
+ container=False,
71
+ )
72
+
73
+ run_button = gr.Button("Run", scale=0)
74
+
75
+ result = gr.Image(label="Result", show_label=False)
76
+
77
+ with gr.Accordion("Advanced Settings", open=False):
78
+
79
+ negative_prompt = gr.Text(
80
+ label="Negative prompt",
81
+ max_lines=1,
82
+ placeholder="Enter a negative prompt",
83
+ value = "Ugly, malformed, noise, blur, watermark",
84
+ )
85
+
86
+ seed = gr.Slider(
87
+ label="Seed",
88
+ minimum=0,
89
+ maximum=MAX_SEED,
90
+ step=1,
91
+ value=0,
92
+ )
93
+
94
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
95
+
96
+ with gr.Row():
97
+
98
+ width = gr.Slider(
99
+ label="Width",
100
+ minimum=256,
101
+ maximum=MAX_IMAGE_SIZE,
102
+ step=32,
103
+ value=512,
104
+ )
105
+
106
+ height = gr.Slider(
107
+ label="Height",
108
+ minimum=256,
109
+ maximum=MAX_IMAGE_SIZE,
110
+ step=32,
111
+ value=512,
112
+ )
113
+
114
+ with gr.Row():
115
+
116
+ guidance_scale = gr.Slider(
117
+ label="Guidance scale",
118
+ minimum=0.0,
119
+ maximum=10.0,
120
+ step=0.1,
121
+ value=3.0,
122
+ )
123
+
124
+ num_inference_steps = gr.Slider(
125
+ label="Number of inference steps",
126
+ minimum=1,
127
+ maximum=12,
128
+ step=1,
129
+ value=5,
130
+ )
131
+
132
+ gr.Examples(
133
+ examples = examples,
134
+ inputs = [prompt]
135
+ )
136
+
137
+ run_button.click(
138
+ fn = infer,
139
+ inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
140
+ outputs = [result]
141
+ )
142
+
143
+ demo.queue().launch()