Spaces:
Running
Running
import os | |
import soundfile as sf | |
import torch | |
from torch.optim import SGD | |
from tqdm import tqdm | |
from InferenceInterfaces.Meta_FastSpeech2 import Meta_FastSpeech2 | |
from Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend | |
from Preprocessing.AudioPreprocessor import AudioPreprocessor | |
from TrainingInterfaces.Text_to_Spectrogram.AutoAligner.Aligner import Aligner | |
from TrainingInterfaces.Text_to_Spectrogram.FastSpeech2.DurationCalculator import DurationCalculator | |
from TrainingInterfaces.Text_to_Spectrogram.FastSpeech2.EnergyCalculator import EnergyCalculator | |
from TrainingInterfaces.Text_to_Spectrogram.FastSpeech2.PitchCalculator import Dio | |
class UtteranceCloner: | |
def __init__(self, device): | |
self.tts = Meta_FastSpeech2(device=device) | |
self.device = device | |
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True # torch 1.9 has a bug in the hub loading, this is a workaround | |
# careful: assumes 16kHz or 8kHz audio | |
self.silero_model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', | |
model='silero_vad', | |
force_reload=False, | |
onnx=False, | |
verbose=False) | |
(self.get_speech_timestamps, _, _, _, _) = utils | |
torch.set_grad_enabled(True) # finding this issue was very infuriating: silero sets | |
# this to false globally during model loading rather than using inference mode or no_grad | |
self.silero_model = self.silero_model.to(self.device) | |
def extract_prosody(self, transcript, ref_audio_path, lang="de", on_line_fine_tune=False): | |
acoustic_model = Aligner() | |
acoustic_checkpoint_path = os.path.join("Models", "Aligner", "aligner.pt") | |
acoustic_model.load_state_dict(torch.load(acoustic_checkpoint_path, map_location='cpu')["asr_model"]) | |
acoustic_model = acoustic_model.to(self.device) | |
dio = Dio(reduction_factor=1, fs=16000) | |
energy_calc = EnergyCalculator(reduction_factor=1, fs=16000) | |
dc = DurationCalculator(reduction_factor=1) | |
wave, sr = sf.read(ref_audio_path) | |
tf = ArticulatoryCombinedTextFrontend(language=lang, use_word_boundaries=False) | |
ap = AudioPreprocessor(input_sr=sr, output_sr=16000, melspec_buckets=80, hop_length=256, n_fft=1024, cut_silence=False) | |
try: | |
norm_wave = ap.audio_to_wave_tensor(normalize=True, audio=wave) | |
except ValueError: | |
print('Something went wrong, the reference wave might be too short.') | |
raise RuntimeError | |
with torch.inference_mode(): | |
speech_timestamps = self.get_speech_timestamps(norm_wave, self.silero_model, sampling_rate=16000) | |
norm_wave = norm_wave[speech_timestamps[0]['start']:speech_timestamps[-1]['end']] | |
norm_wave_length = torch.LongTensor([len(norm_wave)]) | |
text = tf.string_to_tensor(transcript, handle_missing=False).squeeze(0) | |
melspec = ap.audio_to_mel_spec_tensor(audio=norm_wave, normalize=False, explicit_sampling_rate=16000).transpose(0, 1) | |
melspec_length = torch.LongTensor([len(melspec)]).numpy() | |
if on_line_fine_tune: | |
# we fine-tune the aligner for a couple steps using SGD. This makes cloning pretty slow, but the results are greatly improved. | |
steps = 10 | |
tokens = list() # we need an ID sequence for training rather than a sequence of phonological features | |
for vector in text: | |
for phone in tf.phone_to_vector: | |
if vector.numpy().tolist() == tf.phone_to_vector[phone]: | |
tokens.append(tf.phone_to_id[phone]) | |
tokens = torch.LongTensor(tokens) | |
tokens = tokens.squeeze().to(self.device) | |
tokens_len = torch.LongTensor([len(tokens)]).to(self.device) | |
mel = melspec.unsqueeze(0).to(self.device) | |
mel.requires_grad = True | |
mel_len = torch.LongTensor([len(mel[0])]).to(self.device) | |
# actual fine-tuning starts here | |
optim_asr = SGD(acoustic_model.parameters(), lr=0.1) | |
acoustic_model.train() | |
for _ in tqdm(list(range(steps))): | |
pred = acoustic_model(mel) | |
loss = acoustic_model.ctc_loss(pred.transpose(0, 1).log_softmax(2), tokens, mel_len, tokens_len) | |
optim_asr.zero_grad() | |
loss.backward() | |
torch.nn.utils.clip_grad_norm_(acoustic_model.parameters(), 1.0) | |
optim_asr.step() | |
acoustic_model.eval() | |
alignment_path = acoustic_model.inference(mel=melspec.to(self.device), | |
tokens=text.to(self.device), | |
return_ctc=False) | |
duration = dc(torch.LongTensor(alignment_path), vis=None).cpu() | |
energy = energy_calc(input_waves=norm_wave.unsqueeze(0), | |
input_waves_lengths=norm_wave_length, | |
feats_lengths=melspec_length, | |
durations=duration.unsqueeze(0), | |
durations_lengths=torch.LongTensor([len(duration)]))[0].squeeze(0).cpu() | |
pitch = dio(input_waves=norm_wave.unsqueeze(0), | |
input_waves_lengths=norm_wave_length, | |
feats_lengths=melspec_length, | |
durations=duration.unsqueeze(0), | |
durations_lengths=torch.LongTensor([len(duration)]))[0].squeeze(0).cpu() | |
return duration, pitch, energy, speech_timestamps[0]['start'], speech_timestamps[-1]['end'] | |
def clone_utterance(self, | |
path_to_reference_audio, | |
reference_transcription, | |
clone_speaker_identity=True, | |
lang="en"): | |
if clone_speaker_identity: | |
self.tts.set_utterance_embedding(path_to_reference_audio=path_to_reference_audio) | |
duration, pitch, energy, silence_frames_start, silence_frames_end = self.extract_prosody(reference_transcription, | |
path_to_reference_audio, | |
lang=lang) | |
self.tts.set_language(lang) | |
start_sil = torch.zeros([silence_frames_start]).to(self.device) | |
end_sil = torch.zeros([silence_frames_end]).to(self.device) | |
cloned_speech = self.tts(reference_transcription, view=False, durations=duration, pitch=pitch, energy=energy) | |
cloned_utt = torch.cat((start_sil, cloned_speech, end_sil), dim=0) | |
return cloned_utt.cpu() | |