CL-KWS_202408_v1 / dataset /libriphrase_ctc1.py
Francis0917's picture
Upload folder using huggingface_hub
2045faa verified
raw
history blame
19.3 kB
import math, os, re, sys
from pathlib import Path
import numpy as np
import pandas as pd
import Levenshtein
from multiprocessing import Pool
from scipy.io import wavfile
import tensorflow as tf
from tensorflow.keras.utils import Sequence, OrderedEnqueuer
from tensorflow.keras import layers
from tensorflow.keras.preprocessing.sequence import pad_sequences
sys.path.append(os.path.dirname(__file__))
from g2p.g2p_en.g2p import G2p
import warnings
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)
np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning)
class LibriPhraseDataloader(Sequence):
def __init__(self,
batch_size,
fs = 16000,
wav_dir='/share/nas165/yiting/LibriPhrase/LibriPhrase_data',
noise_dir='/share/nas165/yiting/EEND/corpora/JHU/musan/musan/noise/sound-bible',
csv_dir='/share/nas165/yiting/LibriPhrase/data',
train_csv = ['train100h','train_360h'],
test_csv = ['train_500h',],
types='both', # easy, hard
features='g2p_embed', # phoneme, g2p_embed, both ...
train=True,
shuffle=True,
pkl=None,
edit_dist=False,
):
phonemes = ["<pad>", ] + ['AA0', 'AA1', 'AA2', 'AE0', 'AE1', 'AE2', 'AH0', 'AH1', 'AH2', 'AO0',
'AO1', 'AO2', 'AW0', 'AW1', 'AW2', 'AY0', 'AY1', 'AY2', 'B', 'CH',
'D', 'DH', 'EH0', 'EH1', 'EH2', 'ER0', 'ER1', 'ER2', 'EY0', 'EY1',
'EY2', 'F', 'G', 'HH', 'IH0', 'IH1', 'IH2', 'IY0', 'IY1', 'IY2',
'JH', 'K', 'L', 'M', 'N', 'NG', 'OW0', 'OW1', 'OW2', 'OY0',
'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH0', 'UH1',
'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH',
' ']
self.p2idx = {p: idx for idx, p in enumerate(phonemes)}
self.idx2p = {idx: p for idx, p in enumerate(phonemes)}
self.batch_size = batch_size
self.fs = fs
self.wav_dir = wav_dir
self.csv_dir = csv_dir
self.noise_dir = noise_dir
self.train_csv = train_csv
self.test_csv = test_csv
self.types = types
self.features = features
self.train = train
self.shuffle = shuffle
self.pkl = pkl
self.edit_dist = edit_dist
self.nPhoneme = len(phonemes)
self.g2p = G2p()
self.__prep__()
self.on_epoch_end()
def __prep__(self):
if self.train:
print(">> Preparing noise DB")
noise_list = [str(x) for x in Path(self.noise_dir).rglob('*.wav')]
self.noise = np.array([])
for noise in noise_list:
fs, data = wavfile.read(noise)
assert fs == self.fs, ">> Error : Un-match sampling freq.\n{} -> {}".format(noise, fs)
data = data.astype(np.float32) / 32768.0
data = (data / np.max(data)) * 0.5
self.noise = np.append(self.noise, data)
self.data = pd.DataFrame(columns=['wav_label', 'wav', 'text', 'duration', 'label', 'type'])
def process_text(self, x):
if isinstance(x, str):
# Only apply re.sub if x is a string
return re.sub(r"[^a-zA-Z0-9]+", ' ', x)
else:
# Handle other cases, e.g., return x as is or convert to string
return str(x)
if (self.pkl is not None) and (os.path.isfile(self.pkl)):
print(">> Load dataset from {}".format(self.pkl))
self.data = pd.read_pickle(self.pkl)
else:
for db in self.train_csv if self.train else self.test_csv:
csv_list = [str(x) for x in Path(self.csv_dir).rglob('*' + db + '*word*')]
for n_word in csv_list:
print(">> processing : {} ".format(n_word))
df = pd.read_csv(n_word)
# Split train dataset to match & unmatch case
anc_pos = df[['anchor_text', 'anchor', 'anchor_text', 'anchor_dur']]
anc_neg = df[['anchor_text', 'anchor', 'comparison_text', 'anchor_dur', 'target', 'type']]
com_pos = df[['comparison_text', 'comparison', 'comparison_text', 'comparison_dur']]
com_neg = df[['comparison_text', 'comparison', 'anchor_text', 'comparison_dur', 'target', 'type']]
anc_pos.columns = ['wav_label', 'anchor', 'anchor_text', 'anchor_dur']
com_pos.columns = ['wav_label', 'comparison', 'comparison_text', 'comparison_dur']
anc_pos['label'] = 1
anc_pos['type'] = df['type']
com_pos['label'] = 1
com_pos['type'] = df['type']
# Concat
self.data = self.data.append(anc_pos.rename(columns={y: x for x, y in zip(self.data.columns, anc_pos.columns)}), ignore_index=True)
self.data = self.data.append(anc_neg.rename(columns={y: x for x, y in zip(self.data.columns, anc_neg.columns)}), ignore_index=True)
self.data = self.data.append(com_pos.rename(columns={y: x for x, y in zip(self.data.columns, com_pos.columns)}), ignore_index=True)
self.data = self.data.append(com_neg.rename(columns={y: x for x, y in zip(self.data.columns, com_neg.columns)}), ignore_index=True)
# Append wav directory path
self.data['wav'] = self.data['wav'].apply(lambda x: os.path.join(self.wav_dir, x))
# g2p & p2idx by g2p_en package
print(">> Convert word to phoneme")
self.data['phoneme'] = self.data['text'].apply(lambda x: self.g2p(re.sub(r"[^a-zA-Z0-9]+", ' ', x)))
print(">> Convert speech word to phoneme")
self.data['wav_phoneme'] = self.data['wav_label'].apply(lambda x: self.g2p(re.sub(r"[^a-zA-Z0-9]+", ' ', x)))
print(">> Convert phoneme to index")
self.data['pIndex'] = self.data['phoneme'].apply(lambda x: [self.p2idx[t] for t in x])
print(">> Convert speech phoneme to index")
self.data['wav_pIndex'] = self.data['wav_phoneme'].apply(lambda x: [self.p2idx[t] for t in x])
print(">> Compute phoneme embedding")
self.data['g2p_embed'] = self.data['text'].apply(lambda x: self.g2p.embedding(x))
print('wav_label',self.data['wav_label'])
print('text',self.data['text'])
self.data['dist'] = self.data.apply(lambda x: Levenshtein.ratio(re.sub(r"[^a-zA-Z0-9]+", ' ', x['wav_label']), re.sub(r"[^a-zA-Z0-9]+", ' ', x['text'])), axis=1)
#備註解掉的地方
if (self.pkl is not None) and (not os.path.isfile(self.pkl)):
self.data.to_pickle(self.pkl)
# Masking dataset type
if self.types == 'both':
pass
elif self.types == 'easy':
self.data = self.data.loc[self.data['type'] == 'diffspk_easyneg']
elif self.types == 'hard':
self.data = self.data.loc[self.data['type'] == 'diffspk_hardneg']
# Get longest data
self.data = self.data.sort_values(by='duration').reset_index(drop=True)
self.wav_list = self.data['wav'].values
self.idx_list = self.data['pIndex'].values
self.sIdx_list = self.data['wav_pIndex'].values
self.idx_list = [np.insert(lst, 0, 0) for lst in self.idx_list]
self.sIdx_list = [np.insert(lst, 0, 0) for lst in self.sIdx_list]
self.emb_list = self.data['g2p_embed'].values
self.lab_list = self.data['label'].values
if self.edit_dist:
self.dist_list = self.data['dist'].values
# Set dataloader params.
self.len = len(self.data)
self.maxlen_t = int((int(self.data['text'].apply(lambda x: len(x)).max() / 10) + 1) * 10)
self.maxlen_a = int((int(self.data['duration'].values[-1] / 0.5) + 1 ) * self.fs / 2)
self.maxlen_l = int((int(self.data['wav_label'].apply(lambda x: len(x)).max() / 10) + 1) * 10)
def __len__(self):
# return total batch-wise length
return math.ceil(self.len / self.batch_size)
def _load_wav(self, wav):
return np.array(wavfile.read(wav)[1]).astype(np.float32) / 32768.0
def _mixing_snr(self, clean, snr=[5, 15]):
def _cal_adjusted_rms(clean_rms, snr):
a = float(snr) / 20
noise_rms = clean_rms / (10**a)
return noise_rms
def _cal_rms(amp):
return np.sqrt(np.mean(np.square(amp), axis=-1))
start = np.random.randint(0, len(self.noise)-len(clean))
divided_noise = self.noise[start: start + len(clean)]
clean_rms = _cal_rms(clean)
noise_rms = _cal_rms(divided_noise)
adj_noise_rms = _cal_adjusted_rms(clean_rms, np.random.randint(snr[0], snr[1]))
adj_noise_amp = divided_noise * (adj_noise_rms / (noise_rms + 1e-7))
noisy = clean + adj_noise_amp
if np.max(noisy) > 1:
noisy = noisy / np.max(noisy)
return noisy
def __getitem__(self, idx):
# chunking
indices = self.indices[idx * self.batch_size : (idx + 1) * self.batch_size]
# load inputs
batch_x = [np.array(wavfile.read(self.wav_list[i])[1]).astype(np.float32) / 32768.0 for i in indices]
if self.features == 'both':
batch_p = [np.array(self.idx_list[i]).astype(np.int32) for i in indices]
batch_e = [np.array(self.emb_list[i]).astype(np.float32) for i in indices]
else:
if self.features == 'phoneme':
batch_y = [np.array(self.idx_list[i]).astype(np.int32) for i in indices]
elif self.features == 'g2p_embed':
batch_y = [np.array(self.emb_list[i]).astype(np.float32) for i in indices]
# load outputs
batch_z = [np.array([self.lab_list[i]]).astype(np.float32) for i in indices]
batch_l = [np.array(self.sIdx_list[i]).astype(np.int32) for i in indices]
batch_t = [np.array(self.idx_list[i]).astype(np.int32) for i in indices]
if self.edit_dist:
batch_d = [np.array([self.dist_list[i]]).astype(np.float32) for i in indices]
# padding and masking
pad_batch_x = pad_sequences(np.array(batch_x), maxlen=self.maxlen_a, value=0.0, padding='post', dtype=batch_x[0].dtype)
if self.features == 'both':
pad_batch_p = pad_sequences(np.array(batch_p), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_p[0].dtype)
pad_batch_e = pad_sequences(np.array(batch_e), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_e[0].dtype)
else:
pad_batch_y = pad_sequences(np.array(batch_y), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_y[0].dtype)
pad_batch_z = pad_sequences(np.array(batch_z), value=0.0, padding='post', dtype=batch_z[0].dtype)
pad_batch_l = pad_sequences(np.array(batch_l), maxlen=self.maxlen_l, value=0.0, padding='post', dtype=batch_l[0].dtype)
pad_batch_t = pad_sequences(np.array(batch_t), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_t[0].dtype)
if self.edit_dist:
pad_batch_d = pad_sequences(np.array(batch_d), value=0.0, padding='post', dtype=batch_d[0].dtype)
# Noisy option
if self.train:
batch_x_noisy = [self._mixing_snr(x) for x in batch_x]
pad_batch_x_noisy = pad_sequences(np.array(batch_x_noisy), maxlen=self.maxlen_a, value=0.0, padding='post', dtype=batch_x_noisy[0].dtype)
if self.train:
if self.features == 'both':
return pad_batch_x, pad_batch_x_noisy, pad_batch_p, pad_batch_e, pad_batch_z, pad_batch_l, pad_batch_t
else:
return pad_batch_x, pad_batch_x_noisy, pad_batch_y, pad_batch_z, pad_batch_l, pad_batch_t
else:
if self.features == 'both':
if self.edit_dist:
return pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z, pad_batch_d
else:
return pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z
else:
if self.edit_dist:
return pad_batch_x, pad_batch_y, pad_batch_z, pad_batch_d
else:
return pad_batch_x, pad_batch_y, pad_batch_z
def on_epoch_end(self):
self.indices = np.arange(self.len)
if self.shuffle == True:
np.random.shuffle(self.indices)
def convert_sequence_to_dataset(dataloader):
def data_generator():
for i in range(dataloader.__len__()):
if dataloader.train:
if dataloader.features == 'both':
pad_batch_x, pad_batch_x_noisy, pad_batch_p, pad_batch_e, pad_batch_z, pad_batch_l, pad_batch_t = dataloader[i]
yield pad_batch_x, pad_batch_x_noisy, pad_batch_p, pad_batch_e, pad_batch_z, pad_batch_l, pad_batch_t
else:
pad_batch_x, pad_batch_x_noisy, pad_batch_y, pad_batch_z, pad_batch_l, pad_batch_t = dataloader[i]
yield pad_batch_x, pad_batch_x_noisy, pad_batch_y, pad_batch_z, pad_batch_l, pad_batch_t
else:
if dataloader.features == 'both':
if dataloader.edit_dist:
pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z, pad_batch_d = dataloader[i]
yield pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z, pad_batch_d
else:
pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z = dataloader[i]
yield pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z
else:
if dataloader.edit_dist:
pad_batch_x, pad_batch_y, pad_batch_z, pad_batch_d = dataloader[i]
yield pad_batch_x, pad_batch_y, pad_batch_z, pad_batch_d
else:
pad_batch_x, pad_batch_y, pad_batch_z = dataloader[i]
yield pad_batch_x, pad_batch_y, pad_batch_z
if dataloader.train:
if dataloader.features == 'both':
data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=(
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t), dtype=tf.int32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t, 256), dtype=tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_l), dtype=tf.int32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t), dtype=tf.int32),)
)
else:
data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=(
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t) if dataloader.features == 'phoneme' else (None, dataloader.maxlen_t, 256),
dtype=tf.int32 if dataloader.features == 'phoneme' else tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_l), dtype=tf.int32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t), dtype=tf.int32),)
)
else:
if dataloader.features == 'both':
if dataloader.edit_dist:
data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=(
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t), dtype=tf.int32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t, 256), dtype=tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),)
)
else:
data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=(
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t), dtype=tf.int32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t, 256), dtype=tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),)
)
else:
if dataloader.edit_dist:
data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=(
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t) if dataloader.features == 'phoneme' else (None, dataloader.maxlen_t, 256),
dtype=tf.int32 if dataloader.features == 'phoneme' else tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),)
)
else:
data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=(
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t) if dataloader.features == 'phoneme' else (None, dataloader.maxlen_t, 256),
dtype=tf.int32 if dataloader.features == 'phoneme' else tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),)
)
# data_dataset = data_dataset.cache()
data_dataset = data_dataset.prefetch(1)
return data_dataset
if __name__ == '__main__':
GLOBAL_BATCH_SIZE = 2048
train_dataset = LibriPhraseDataloader(batch_size=GLOBAL_BATCH_SIZE, train=True, types='both', shuffle=True, features='g2p_embed')
test_dataset = LibriPhraseDataloader(batch_size=GLOBAL_BATCH_SIZE, train=False, edit_dist=True, types='both', shuffle=False, features='g2p_embed')
train_dataset = LibriPhraseDataloader(batch_size=GLOBAL_BATCH_SIZE, train=True, types='both', shuffle=True, pkl='/share/nas165/yiting/PhonMatchNet/data/train_both.pkl', features='g2p_embed')
test_dataset = LibriPhraseDataloader(batch_size=GLOBAL_BATCH_SIZE, train=False, edit_dist=True, types='both', shuffle=False, pkl='/share/nas165/yiting/PhonMatchNet/data/test_both.pkl', features='g2p_embed')