Spaces:
Sleeping
Sleeping
library(shiny) | |
source('var.test.R') | |
shinyServer(function(input,output,session){ | |
observe({ | |
inFile <- input$file1 | |
if(is.null(inFile)) | |
dt <- read.table('var_data.txt', header=T, sep='\t') | |
else dt <- read.csv(inFile$datapath, header=input$header, | |
sep=input$sep) | |
updateSelectInput(session, "variable", choices=names(dt)) | |
}) | |
output$statistic <- renderTable({ | |
inFile <- input$file1 | |
if(is.null(inFile)) | |
dt <- read.table('var_data.txt', header=T, sep='\t') | |
else dt <- read.csv(inFile$datapath, header=input$header, | |
sep=input$sep) | |
y <- na.omit(dt[, input$variable]) # Para sacar los NA de la variable | |
res <- data.frame(Min=min(y), Var=var(y), | |
Max=max(y), n=length(y)) | |
colnames(res) <- c('Mínimo', 'Varianza', 'Máximo', 'Número obs') | |
res | |
}, align='c', bordered=TRUE) | |
output$appPlot <- renderPlot({ | |
inFile <- input$file1 | |
if(is.null(inFile)) | |
dt <- read.table('var_data.txt', header=T, sep='\t') | |
else dt <- read.csv(inFile$datapath, header=input$header, sep=input$sep) | |
par(mfrow=c(1, 2), bg='gray98') | |
y <- na.omit(dt[, input$variable]) # Para sacar los NA de la variable | |
hist(y, col='deepskyblue3', freq=F, las=1, | |
xlab=as.character(input$variable), | |
main='Histograma y densidad', ylab='Densidad') | |
lines(density(y), lwd=4, col='firebrick3') | |
qqnorm(y, las=1, main='QQplot', | |
pch=19, col='deepskyblue3', | |
ylab=as.character(input$variable)) | |
qqline(y) | |
ks <- ks.test(x=y, y=pnorm) | |
legend('topleft', bty='n', col='red', text.col='deepskyblue3', | |
legend=paste('Valor P=', round(ks$p.value,2))) | |
}) | |
output$inputData <- renderTable({ | |
inFile <- input$file1 | |
if(is.null(inFile)) | |
dt <- read.table('var_data.txt', header=T, sep='\t') | |
else dt <- read.csv(inFile$datapath, header=input$header, | |
sep=input$sep) | |
dt | |
}) | |
output$resul1 <- renderText({ | |
inFile <- input$file1 | |
if(is.null(inFile)) | |
dt <- read.table('var_data.txt', header=T, sep='\t') | |
else dt <- read.csv(inFile$datapath, header=input$header, | |
sep=input$sep) | |
y <- na.omit(dt[, input$variable]) # Para sacar los NA de la variable | |
ph <- var.test(x=y, alternative=input$h0, | |
null.value=input$sigma20, | |
conf.level=input$alfa) | |
paste0('El estadístico de prueba es ', round(ph$statistic, 2), | |
' con un valor-P de ', round(ph$p.value, 4), '.') | |
}) | |
output$resul2 <- renderText({ | |
inFile <- input$file1 | |
if(is.null(inFile)) | |
dt <- read.table('var_data.txt', header=T, sep='\t') | |
else dt <- read.csv(inFile$datapath, header=input$header, | |
sep=input$sep) | |
y <- na.omit(dt[, input$variable]) # Para sacar los NA de la variable | |
ph <- var.test(x=y, alternative=input$h0, | |
null.value=input$sigma20, | |
conf.level=input$alfa) | |
intervalo <- paste("(", round(ph$conf.int[1], digits=4), ", ", | |
round(ph$conf.int[2], digits=4), ").", sep='') | |
paste0('El intervalo de confianza del ', 100*input$alfa, | |
'% para la varianza poblacional es ', intervalo) | |
}) | |
output$miteoria <- renderUI({ | |
HTML(markdown::markdownToHTML(knit(input='include.md', quiet=TRUE))) | |
}) | |
}) | |