Spaces:
Sleeping
Sleeping
FridayMaster
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import pandas as pd
|
2 |
import fitz # PyMuPDF for PDF extraction
|
3 |
import spacy
|
4 |
-
from langchain.
|
|
|
|
|
5 |
import torch
|
6 |
from transformers import AutoTokenizer, AutoModel
|
7 |
import gradio as gr
|
8 |
-
from langchain_community.vectorstores import FAISS
|
9 |
-
|
10 |
|
11 |
# Load and preprocess PDF text
|
12 |
def extract_text_from_pdf(pdf_path):
|
@@ -18,13 +18,12 @@ def extract_text_from_pdf(pdf_path):
|
|
18 |
return text
|
19 |
|
20 |
# Extract text from the PDF
|
21 |
-
pdf_text = extract_text_from_pdf('Getting Started with Ubuntu 16.04.pdf')
|
22 |
-
|
23 |
|
24 |
# Convert the text to a DataFrame
|
25 |
df = pd.DataFrame({'text': [pdf_text]})
|
26 |
|
27 |
-
#
|
28 |
class CustomEmbeddingModel:
|
29 |
def __init__(self, model_name):
|
30 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -39,7 +38,7 @@ class CustomEmbeddingModel:
|
|
39 |
embedding_model = CustomEmbeddingModel('distilbert-base-uncased') # Replace with your model name
|
40 |
|
41 |
# Load Spacy model for preprocessing
|
42 |
-
nlp = spacy.load("en_core_web_sm")
|
43 |
|
44 |
def preprocess_text(text):
|
45 |
doc = nlp(text)
|
@@ -55,16 +54,15 @@ documents = df['text'].tolist()
|
|
55 |
embeddings = df['text_embeddings'].tolist()
|
56 |
vector_store = FAISS.from_documents(documents, embeddings)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
58 |
# Function to generate a response
|
59 |
-
def generate_response(
|
60 |
-
|
61 |
-
|
62 |
-
# Find the closest document in the vector store
|
63 |
-
distances, indices = vector_store.search(query_embedding, k=1) # k=1 for the closest document
|
64 |
-
if indices:
|
65 |
-
response = documents[indices[0]]
|
66 |
-
else:
|
67 |
-
response = "No relevant information found."
|
68 |
return response
|
69 |
|
70 |
# Gradio interface
|
@@ -79,3 +77,4 @@ iface = gr.Interface(
|
|
79 |
if __name__ == "__main__":
|
80 |
iface.launch()
|
81 |
|
|
|
|
1 |
import pandas as pd
|
2 |
import fitz # PyMuPDF for PDF extraction
|
3 |
import spacy
|
4 |
+
from langchain.chains import ConversationalRetrievalChain
|
5 |
+
from langchain.llms import OpenAI
|
6 |
+
from langchain_community.vectorstores import FAISS # Updated import
|
7 |
import torch
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import gradio as gr
|
|
|
|
|
10 |
|
11 |
# Load and preprocess PDF text
|
12 |
def extract_text_from_pdf(pdf_path):
|
|
|
18 |
return text
|
19 |
|
20 |
# Extract text from the PDF
|
21 |
+
pdf_text = extract_text_from_pdf('Getting Started with Ubuntu 16.04.pdf') # Ensure this path is correct
|
|
|
22 |
|
23 |
# Convert the text to a DataFrame
|
24 |
df = pd.DataFrame({'text': [pdf_text]})
|
25 |
|
26 |
+
# Load the custom embedding model
|
27 |
class CustomEmbeddingModel:
|
28 |
def __init__(self, model_name):
|
29 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
38 |
embedding_model = CustomEmbeddingModel('distilbert-base-uncased') # Replace with your model name
|
39 |
|
40 |
# Load Spacy model for preprocessing
|
41 |
+
nlp = spacy.load("en_core_web_sm") # Ensure the model is installed
|
42 |
|
43 |
def preprocess_text(text):
|
44 |
doc = nlp(text)
|
|
|
54 |
embeddings = df['text_embeddings'].tolist()
|
55 |
vector_store = FAISS.from_documents(documents, embeddings)
|
56 |
|
57 |
+
# Create LangChain model and chain
|
58 |
+
llm_model = OpenAI('gpt-3.5-turbo') # You can replace this with a different LLM if desired
|
59 |
+
retriever = vector_store.as_retriever()
|
60 |
+
chain = ConversationalRetrievalChain.from_llm(llm_model, retriever=retriever)
|
61 |
+
|
62 |
# Function to generate a response
|
63 |
+
def generate_response(prompt):
|
64 |
+
result = chain({"query": prompt})
|
65 |
+
response = result["result"]
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return response
|
67 |
|
68 |
# Gradio interface
|
|
|
77 |
if __name__ == "__main__":
|
78 |
iface.launch()
|
79 |
|
80 |
+
|