FridayMaster commited on
Commit
6dc00a6
1 Parent(s): 90336d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -10,13 +10,16 @@ import nltk
10
  nltk.download('punkt')
11
  nltk.download('punkt_tab')
12
 
13
- faiss_path="ubuntu_manual.txt"
 
 
 
14
  # Load the Ubuntu manual from a .txt file
15
  try:
16
- with open("ubuntu_manual.txt", "r", encoding="utf-8") as file:
17
  full_text = file.read()
18
  except FileNotFoundError:
19
- raise FileNotFoundError("The file ubuntu_manual.txt was not found.")
20
 
21
  # Function to chunk the text into smaller pieces
22
  def chunk_text(text, chunk_size=500): # Larger chunks
@@ -41,10 +44,9 @@ manual_chunks = chunk_text(full_text, chunk_size=500)
41
 
42
  # Load your FAISS index
43
  try:
44
- # Load your FAISS index
45
- index = faiss.read_index("/absolute/path/to/manual_chunked_faiss_index_500.bin")
46
  except Exception as e:
47
- raise RuntimeError(f"Failed to load FAISS index: {e}")
48
 
49
  # Load your embedding model
50
  embedding_model = SentenceTransformer('FridayMaster/fine_tune_embedding')
@@ -52,7 +54,6 @@ embedding_model = SentenceTransformer('FridayMaster/fine_tune_embedding')
52
  # OpenAI API key
53
  openai.api_key = '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'
54
 
55
-
56
  # Function to create embeddings
57
  def embed_text(text_list):
58
  return np.array(embedding_model.encode(text_list), dtype=np.float32)
@@ -64,6 +65,8 @@ def retrieve_chunks(query, k=5):
64
  # Search the FAISS index
65
  try:
66
  distances, indices = index.search(query_embedding, k=k)
 
 
67
  except Exception as e:
68
  raise RuntimeError(f"FAISS search failed: {e}")
69
 
 
10
  nltk.download('punkt')
11
  nltk.download('punkt_tab')
12
 
13
+ # Define paths as variables
14
+ manual_path = "ubuntu_manual.txt"
15
+ faiss_path = "manual_chunked_faiss_index_500.bin"
16
+
17
  # Load the Ubuntu manual from a .txt file
18
  try:
19
+ with open(manual_path, "r", encoding="utf-8") as file:
20
  full_text = file.read()
21
  except FileNotFoundError:
22
+ raise FileNotFoundError(f"The file {manual_path} was not found.")
23
 
24
  # Function to chunk the text into smaller pieces
25
  def chunk_text(text, chunk_size=500): # Larger chunks
 
44
 
45
  # Load your FAISS index
46
  try:
47
+ index = faiss.read_index(faiss_path)
 
48
  except Exception as e:
49
+ raise RuntimeError(f"Failed to load FAISS index from {faiss_path}: {e}")
50
 
51
  # Load your embedding model
52
  embedding_model = SentenceTransformer('FridayMaster/fine_tune_embedding')
 
54
  # OpenAI API key
55
  openai.api_key = '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'
56
 
 
57
  # Function to create embeddings
58
  def embed_text(text_list):
59
  return np.array(embedding_model.encode(text_list), dtype=np.float32)
 
65
  # Search the FAISS index
66
  try:
67
  distances, indices = index.search(query_embedding, k=k)
68
+ print("Indices:", indices)
69
+ print("Distances:", distances)
70
  except Exception as e:
71
  raise RuntimeError(f"FAISS search failed: {e}")
72