import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer model_name = 'FridayMaster/fine_tune_embedding' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Use the appropriate class # Define a function to generate responses def generate_response(prompt): # Tokenize the input prompt inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512) with torch.no_grad(): # Generate a response using the model outputs = model.generate(inputs['input_ids'], max_length=150, num_return_sequences=1) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create a Gradio interface iface = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="Enter your message", placeholder="Type something here..."), outputs=gr.Textbox(label="Response"), title="Chatbot Interface", description="Interact with the fine-tuned chatbot model." ) # Launch the Gradio app if __name__ == "__main__": iface.launch()