Spaces:
Runtime error
Runtime error
File size: 7,545 Bytes
6742988 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" DalleBart model configuration """
import warnings
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from .utils import PretrainedFromWandbMixin
logger = logging.get_logger(__name__)
class DalleBartConfig(PretrainedFromWandbMixin, PretrainedConfig):
model_type = "dallebart"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "encoder_attention_heads",
"hidden_size": "d_model",
}
def __init__(
self,
normalize_text=False,
encoder_vocab_size=50264,
image_vocab_size=16384, # encoded image token space
image_length=256, # number of encoded tokens
max_text_length=64, # max number of text tokens
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
scale_embedding=False,
gradient_checkpointing=False,
use_cache=True,
is_encoder_decoder=True,
forced_eos_token_id=None,
tie_word_embeddings=False, # different modalities and sizes
do_sample=True,
# transformer variants
use_bias=False, # use bias in attention and dense layers (except for lm_head)
ln_type="layernorm", # layer normalization type, "rmsnorm", "layernorm"
ln_positions="normformer", # layer normalization positions, "normformer", "swinv2", "cogview", "postln", "preln", "deepnet" (same as postln)
use_head_scale=False, # used in NormFormer
use_cosine_attention=False, # used in Swin v2
tau_init=0.05, # used only in cosine attention (Swin v2)
use_absolute_position_embeddings=True, # default
use_swin_position_embeddings=False, # used in Swin v1/v2
use_deepnet_scaling=False, # used in Deepnet
use_glu=False, # "GLU Variants Improve Transformer"
use_alibi=False, # Not implemented yet - from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation"
sinkhorn_iters=1, # used in SinkFormers
use_final_ln_encoder=True, # final layer normalization in encoder
use_final_ln_decoder=True, # final layer normalization in decoder
# parameters that should not be necessary but could affect results
force_ln_scale=False, # force scale in layernorm even when followed by dense layers
**kwargs,
):
# text normalizer
self.normalize_text = normalize_text
# transformer variants
self.use_bias = use_bias
assert ln_type in [
"rmsnorm",
"layernorm",
], "ln_type must be 'rmsnorm' or 'layernorm'"
self.ln_type = ln_type
if ln_positions == "deepnet":
ln_positions = "postln"
assert ln_positions in [
"normformer",
"swinv2",
"cogview",
"postln",
"preln",
], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'"
self.use_head_scale = use_head_scale
assert use_alibi is False, "use_alibi is not supported yet"
self.ln_positions = ln_positions
self.use_cosine_attention = use_cosine_attention
self.tau_init = tau_init
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.use_swin_position_embeddings = use_swin_position_embeddings
self.use_deepnet_scaling = use_deepnet_scaling
self.use_glu = use_glu
self.use_alibi = use_alibi
self.sinkhorn_iters = sinkhorn_iters
if ln_positions == "postln":
assert (
use_final_ln_encoder
), "use_final_ln_encoder must be True when ln_positions is 'postln'"
assert (
use_final_ln_decoder
), "use_final_ln_decoder must be True when ln_positions is 'postln'"
self.use_final_ln_encoder = use_final_ln_encoder
self.use_final_ln_decoder = use_final_ln_decoder
self.force_ln_scale = force_ln_scale
# common parameters
self.encoder_vocab_size = encoder_vocab_size
self.image_vocab_size = image_vocab_size
self.image_length = image_length
self.max_text_length = max_text_length
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.use_cache = use_cache
self.gradient_checkpointing = gradient_checkpointing
self.scale_embedding = (
scale_embedding # scale factor will be sqrt(d_model) if True
)
# special token id's are appended to vocab if not provided
decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size)
bos_token_id = kwargs.pop("bos_token_id", image_vocab_size)
pad_token_id = kwargs.pop("pad_token_id", image_vocab_size)
eos_token_id = kwargs.pop("eos_token_id", image_vocab_size)
# we generate to image_length + 1 (for bos) by default
min_length = kwargs.pop("min_length", image_length + 1)
max_length = kwargs.pop("max_length", image_length + 1)
super().__init__(
# args required in parent class
is_encoder_decoder=is_encoder_decoder,
tie_word_embeddings=tie_word_embeddings,
forced_eos_token_id=forced_eos_token_id,
decoder_start_token_id=decoder_start_token_id,
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
min_length=min_length,
max_length=max_length,
do_sample=do_sample,
**kwargs,
)
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get(
"force_bos_token_to_be_generated", False
):
self.forced_bos_token_id = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
"The config can simply be saved and uploaded again to be fixed."
)
|