File size: 7,545 Bytes
6742988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" DalleBart model configuration """
import warnings

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

from .utils import PretrainedFromWandbMixin

logger = logging.get_logger(__name__)


class DalleBartConfig(PretrainedFromWandbMixin, PretrainedConfig):
    model_type = "dallebart"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {
        "num_attention_heads": "encoder_attention_heads",
        "hidden_size": "d_model",
    }

    def __init__(
        self,
        normalize_text=False,
        encoder_vocab_size=50264,
        image_vocab_size=16384,  # encoded image token space
        image_length=256,  # number of encoded tokens
        max_text_length=64,  # max number of text tokens
        encoder_layers=12,
        encoder_ffn_dim=4096,
        encoder_attention_heads=16,
        decoder_layers=12,
        decoder_ffn_dim=4096,
        decoder_attention_heads=16,
        activation_function="gelu",
        d_model=1024,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        init_std=0.02,
        scale_embedding=False,
        gradient_checkpointing=False,
        use_cache=True,
        is_encoder_decoder=True,
        forced_eos_token_id=None,
        tie_word_embeddings=False,  # different modalities and sizes
        do_sample=True,
        # transformer variants
        use_bias=False,  # use bias in attention and dense layers (except for lm_head)
        ln_type="layernorm",  # layer normalization type, "rmsnorm", "layernorm"
        ln_positions="normformer",  # layer normalization positions, "normformer", "swinv2", "cogview", "postln", "preln", "deepnet" (same as postln)
        use_head_scale=False,  # used in NormFormer
        use_cosine_attention=False,  # used in Swin v2
        tau_init=0.05,  # used only in cosine attention (Swin v2)
        use_absolute_position_embeddings=True,  # default
        use_swin_position_embeddings=False,  # used in Swin v1/v2
        use_deepnet_scaling=False,  # used in Deepnet
        use_glu=False,  # "GLU Variants Improve Transformer"
        use_alibi=False,  # Not implemented yet - from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation"
        sinkhorn_iters=1,  # used in SinkFormers
        use_final_ln_encoder=True,  # final layer normalization in encoder
        use_final_ln_decoder=True,  # final layer normalization in decoder
        # parameters that should not be necessary but could affect results
        force_ln_scale=False,  # force scale in layernorm even when followed by dense layers
        **kwargs,
    ):
        # text normalizer
        self.normalize_text = normalize_text

        # transformer variants
        self.use_bias = use_bias
        assert ln_type in [
            "rmsnorm",
            "layernorm",
        ], "ln_type must be 'rmsnorm' or 'layernorm'"
        self.ln_type = ln_type
        if ln_positions == "deepnet":
            ln_positions = "postln"
        assert ln_positions in [
            "normformer",
            "swinv2",
            "cogview",
            "postln",
            "preln",
        ], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'"
        self.use_head_scale = use_head_scale
        assert use_alibi is False, "use_alibi is not supported yet"
        self.ln_positions = ln_positions
        self.use_cosine_attention = use_cosine_attention
        self.tau_init = tau_init
        self.use_absolute_position_embeddings = use_absolute_position_embeddings
        self.use_swin_position_embeddings = use_swin_position_embeddings
        self.use_deepnet_scaling = use_deepnet_scaling
        self.use_glu = use_glu
        self.use_alibi = use_alibi
        self.sinkhorn_iters = sinkhorn_iters
        if ln_positions == "postln":
            assert (
                use_final_ln_encoder
            ), "use_final_ln_encoder must be True when ln_positions is 'postln'"
            assert (
                use_final_ln_decoder
            ), "use_final_ln_decoder must be True when ln_positions is 'postln'"
        self.use_final_ln_encoder = use_final_ln_encoder
        self.use_final_ln_decoder = use_final_ln_decoder
        self.force_ln_scale = force_ln_scale

        # common parameters
        self.encoder_vocab_size = encoder_vocab_size
        self.image_vocab_size = image_vocab_size
        self.image_length = image_length
        self.max_text_length = max_text_length
        self.d_model = d_model
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.use_cache = use_cache
        self.gradient_checkpointing = gradient_checkpointing
        self.scale_embedding = (
            scale_embedding  # scale factor will be sqrt(d_model) if True
        )

        # special token id's are appended to vocab if not provided
        decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size)
        bos_token_id = kwargs.pop("bos_token_id", image_vocab_size)
        pad_token_id = kwargs.pop("pad_token_id", image_vocab_size)
        eos_token_id = kwargs.pop("eos_token_id", image_vocab_size)

        # we generate to image_length + 1 (for bos) by default
        min_length = kwargs.pop("min_length", image_length + 1)
        max_length = kwargs.pop("max_length", image_length + 1)

        super().__init__(
            # args required in parent class
            is_encoder_decoder=is_encoder_decoder,
            tie_word_embeddings=tie_word_embeddings,
            forced_eos_token_id=forced_eos_token_id,
            decoder_start_token_id=decoder_start_token_id,
            bos_token_id=bos_token_id,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            min_length=min_length,
            max_length=max_length,
            do_sample=do_sample,
            **kwargs,
        )

        # ensure backward compatibility for BART CNN models
        if self.forced_bos_token_id is None and kwargs.get(
            "force_bos_token_to_be_generated", False
        ):
            self.forced_bos_token_id = self.bos_token_id
            warnings.warn(
                f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
                "The config can simply be saved and uploaded again to be fixed."
            )