Spaces:
Runtime error
Runtime error
File size: 9,546 Bytes
6742988 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
{
"cells": [
{
"cell_type": "markdown",
"id": "d0b72877",
"metadata": {},
"source": [
"# Pre-encoding a dataset for DALLE路mini"
]
},
{
"cell_type": "markdown",
"id": "ba7b31e6",
"metadata": {},
"source": [
"This notebook shows how to pre-encode images to token sequences using JAX, VQGAN and a dataset in the [`webdataset` format](https://webdataset.github.io/webdataset/).\n",
"\n",
"Adapt it to your own dataset and image encoder.\n",
"\n",
"At the end you should have a dataset of pairs:\n",
"* a caption defined as a string\n",
"* an encoded image defined as a list of int."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b59489e",
"metadata": {},
"outputs": [],
"source": [
"from tqdm.notebook import tqdm\n",
"\n",
"import torchvision.transforms as T\n",
"\n",
"import webdataset as wds\n",
"\n",
"import jax\n",
"import braceexpand\n",
"from pathlib import Path"
]
},
{
"cell_type": "markdown",
"id": "c7c4c1e6",
"metadata": {},
"source": [
"## Configuration Parameters"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1265dbfe",
"metadata": {},
"outputs": [],
"source": [
"shards = \"my_images/shard-{0000..0008}.tar\" # defined using braceexpand format as used by webdataset\n",
"encoded_output = Path(\"encoded_data\") # where we will save our encoded data\n",
"\n",
"VQGAN_REPO, VQGAN_COMMIT_ID = (\n",
" \"dalle-mini/vqgan_imagenet_f16_16384\",\n",
" \"85eb5d3b51a1c62a0cc8f4ccdee9882c0d0bd384\",\n",
")\n",
"\n",
"# good defaults for a TPU v3-8\n",
"batch_size = 128 # Per device\n",
"num_workers = 8 # For parallel processing\n",
"total_bs = batch_size * jax.device_count() # You can use a smaller size while testing\n",
"save_frequency = 128 # Number of batches to create a new file (180MB聽for f16 and 720MB for f8 per file)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "cd956ec6-7d98-4d4d-a454-f80fe857eadd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['XXX/shard-0000.tar',\n",
" 'XXX/shard-0001.tar',\n",
" 'XXX/shard-0002.tar',\n",
" 'XXX/shard-0003.tar',\n",
" 'XXX/shard-0004.tar',\n",
" 'XXX/shard-0005.tar',\n",
" 'XXX/shard-0006.tar',\n",
" 'XXX/shard-0007.tar',\n",
" 'XXX/shard-0008.tar']"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"shards = list(\n",
" braceexpand.braceexpand(shards)\n",
") # better display for tqdm with known length"
]
},
{
"cell_type": "markdown",
"id": "75dba8e2",
"metadata": {},
"source": [
"## Load data"
]
},
{
"cell_type": "markdown",
"id": "a1e8fb95",
"metadata": {},
"source": [
"We load data using `webdataset`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ef5de9e",
"metadata": {},
"outputs": [],
"source": [
"ds = (\n",
" wds.WebDataset(shards, handler=wds.warn_and_continue)\n",
" .decode(\"rgb\", handler=wds.warn_and_continue)\n",
" .to_tuple(\"jpg\", \"txt\") # assumes image is in `jpg` and caption in `txt`\n",
" .batched(total_bs) # load in batch per worker (faster)\n",
")"
]
},
{
"cell_type": "markdown",
"id": "90981824",
"metadata": {},
"source": [
"Note:\n",
"* you can also shuffle shards and items using `shardshuffle` and `shuffle` if necessary.\n",
"* you may need to resize images in your pipeline (with `map_dict` for example), we assume they are already set to 256x256.\n",
"* you can also filter out some items using `select`."
]
},
{
"cell_type": "markdown",
"id": "129c377d",
"metadata": {},
"source": [
"We can now inspect our data."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8cac98cb",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"%%time\n",
"images, captions = next(iter(ds))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd268fbf",
"metadata": {},
"outputs": [],
"source": [
"images.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5acfc4d8",
"metadata": {},
"outputs": [],
"source": [
"captions[:10]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c24693c0",
"metadata": {},
"outputs": [],
"source": [
"T.ToPILImage()(images[0].permute(2, 0, 1))"
]
},
{
"cell_type": "markdown",
"id": "3059ffb1",
"metadata": {},
"source": [
"Finally we create our dataloader."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c227c551",
"metadata": {},
"outputs": [],
"source": [
"dl = (\n",
" wds.WebLoader(ds, batch_size=None, num_workers=8).unbatched().batched(total_bs)\n",
") # avoid partial batch at the end of each worker"
]
},
{
"cell_type": "markdown",
"id": "a354472b",
"metadata": {},
"source": [
"## Image encoder\n",
"\n",
"We'll use a VQGAN trained with Taming Transformers and converted to a JAX model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "47a8b818",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"from vqgan_jax.modeling_flax_vqgan import VQModel\n",
"from flax.jax_utils import replicate\n",
"\n",
"vqgan = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")\n",
"vqgan_params = replicate(vqgan.params)"
]
},
{
"cell_type": "markdown",
"id": "62ad01c3",
"metadata": {},
"source": [
"## Encoding"
]
},
{
"cell_type": "markdown",
"id": "20357f74",
"metadata": {},
"source": [
"Encoding is really simple using `shard` to automatically distribute batches across devices and `pmap`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "322a4619",
"metadata": {},
"outputs": [],
"source": [
"from flax.training.common_utils import shard\n",
"from functools import partial\n",
"\n",
"\n",
"@partial(jax.pmap, axis_name=\"batch\")\n",
"def p_encode(batch, params):\n",
" # Not sure if we should `replicate` params, does not seem to have any effect\n",
" _, indices = vqgan.encode(batch, params=params)\n",
" return indices"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ff6c10d4",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"\n",
"def encode_dataset(dataloader, output_dir, save_frequency):\n",
" output_dir.mkdir(parents=True, exist_ok=True)\n",
" all_captions = []\n",
" all_encoding = []\n",
" n_file = 1\n",
" for idx, (images, captions) in enumerate(tqdm(dataloader)):\n",
" images = images.numpy()\n",
" n = len(images) // 8 * 8\n",
" if n != len(images):\n",
" # get the max number of images we can (multiple of 8)\n",
" print(f\"Different sizes {n} vs {len(images)}\")\n",
" images = images[:n]\n",
" captions = captions[:n]\n",
" if not len(captions):\n",
" print(f\"No images/captions in batch...\")\n",
" continue\n",
" images = shard(images)\n",
" encoded = p_encode(images, vqgan_params)\n",
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
" all_captions.extend(captions)\n",
" all_encoding.extend(encoded.tolist())\n",
"\n",
" # save files\n",
" if (idx + 1) % save_frequency == 0:\n",
" print(f\"Saving file {n_file}\")\n",
" batch_df = pd.DataFrame.from_dict(\n",
" {\"caption\": all_captions, \"encoding\": all_encoding}\n",
" )\n",
" batch_df.to_parquet(f\"{output_dir}/{n_file:03d}.parquet\")\n",
" all_captions = []\n",
" all_encoding = []\n",
" n_file += 1\n",
"\n",
" if len(all_captions):\n",
" print(f\"Saving final file {n_file}\")\n",
" batch_df = pd.DataFrame.from_dict(\n",
" {\"caption\": all_captions, \"encoding\": all_encoding}\n",
" )\n",
" batch_df.to_parquet(f\"{output_dir}/{n_file:03d}.parquet\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7704863d",
"metadata": {},
"outputs": [],
"source": [
"encode_dataset(dl, output_dir=encoded_output, save_frequency=save_frequency)"
]
},
{
"cell_type": "markdown",
"id": "8953dd84",
"metadata": {},
"source": [
"----"
]
}
],
"metadata": {
"interpreter": {
"hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|