File size: 6,187 Bytes
6742988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# An implementation of SM3 from:
#
# Memory-Efficient Adaptive Optimization, https://arxiv.org/pdf/1901.11150.pdf
# Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer
#
# Author: Rohan Anil (rohananil at google dot com)
#

"""SM3 Implementation."""

import functools
from typing import Any, NamedTuple

import chex
import jax
import jax.numpy as jnp
import optax

from .quantization_utils import QuantizedValue


class SM3State(NamedTuple):
    count: chex.Array
    stats: Any


# Per parameter optimizer state used in data-parallel training.
class ParameterStats(NamedTuple):
    """State associated to each parameter of the model being trained."""

    diagonal_statistics: chex.Array  # Accumulator for diagonal preconditioner
    diagonal_momentum: QuantizedValue  # Momentum for the diagonal preconditioner


def sm3(
    learning_rate, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, normalize_grads=False
):
    """SM3 optimizer.

    Memory-Efficient Adaptive Optimization, Rohan Anil, Vineet Gupta, Tomer Koren,
      Yoram Singer

    https://arxiv.org/abs/1901.11150

    Args:
      learning_rate: the step size used to update the parameters.
      beta1: momentum parameter.
      beta2: second moment averaging parameter.
      diagonal_epsilon: epsilon for sm3
      normalize_grads: Whether to normalize grads. Author finds it useful when
        grads are high variance.

    Returns:
      a GradientTransformation.
    """

    def _quantize_momentum(momentum_statistics):
        return QuantizedValue.from_float_value(momentum_statistics, jnp.int8)

    def init_fn(params):
        """Initialise the optimiser's state."""

        def _init(param):
            accumulators = [jnp.zeros([s]) for s in param.shape]
            momentum = _quantize_momentum(jnp.zeros_like(param))
            return ParameterStats(accumulators, momentum)

        return SM3State(
            count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params)
        )

    def _get_expanded_shape(shape, i):
        rank = len(shape)
        # Replaces a `shape` of [M, N, K] with 1 in all dimensions except for i.
        # For eg: i = 1 returns [1, N, 1].
        return [1] * i + [shape[i]] + [1] * (rank - i - 1)

    def _moving_averages(grad, accumulators):
        w = (1.0 - beta2) if beta2 != 1.0 else 1.0
        if grad.ndim < 2:
            return beta2 * accumulators[0] + w * grad**2
        else:
            min_accumulator = functools.reduce(jnp.minimum, accumulators)
            return beta2 * min_accumulator + w * grad**2

    def _moving_averages_momentum(grad, momentum):
        w = (1.0 - beta1) if beta1 != 1.0 else 1.0
        return beta1 * momentum.to_float() + w * grad

    def _sketch_diagonal_statistics(grad, updated_diagonal_statistics):
        all_diagonal_statistics = []
        for i in range(grad.ndim):
            axes = list(range(i)) + list(range(i + 1, grad.ndim))
            dim_diagonal_statistics = jnp.max(updated_diagonal_statistics, axis=axes)
            all_diagonal_statistics.append(dim_diagonal_statistics)
        if grad.ndim == 1:
            all_diagonal_statistics[0] = updated_diagonal_statistics
        return all_diagonal_statistics

    def update_fn(updates, state, params=None):
        del params
        stats = state.stats
        if normalize_grads:
            updates = jax.tree_map(lambda g: g / (jnp.linalg.norm(g) + 1e-16), updates)
        # Reshape all vectors into N-d tensors to compute min over them.
        # [n], [m] -> [n, 1], [1, m]
        expanded_diagonal_statistics = jax.tree_multimap(
            lambda grad, state: [  # pylint:disable=g-long-lambda
                jnp.reshape(
                    state.diagonal_statistics[i], _get_expanded_shape(grad.shape, i)
                )
                for i in range(grad.ndim)
            ],
            updates,
            stats,
        )

        # Compute new diagonal statistics
        new_diagonal_statistics = jax.tree_multimap(
            _moving_averages, updates, expanded_diagonal_statistics
        )

        # Compute preconditioners (1/sqrt(s)) where s is the statistics.
        new_preconditioners = jax.tree_map(
            lambda t: 1.0 / jnp.sqrt(t + diagonal_epsilon), new_diagonal_statistics
        )
        preconditioned_grads = jax.tree_multimap(
            lambda g, p: g * p, updates, new_preconditioners
        )

        # Compute updated momentum (also handle quantization)
        updated_momentum = jax.tree_multimap(
            lambda preconditioned_grad, state: _moving_averages_momentum(  # pylint:disable=g-long-lambda
                preconditioned_grad, state.diagonal_momentum
            ),
            preconditioned_grads,
            stats,
        )

        # Update diagonal statistics.
        updated_diagonal_statistics = jax.tree_multimap(
            _sketch_diagonal_statistics, updates, new_diagonal_statistics
        )

        # Update momentum.
        new_sm3_stats = jax.tree_multimap(
            lambda momentum, diagonal_stats: ParameterStats(  # pylint:disable=g-long-lambda
                diagonal_stats, _quantize_momentum(momentum)
            ),
            updated_momentum,
            updated_diagonal_statistics,
        )

        lr = learning_rate
        if callable(learning_rate):
            lr = learning_rate(state.count)

        new_updates = jax.tree_map(lambda pg: -lr * pg, updated_momentum)
        return new_updates, SM3State(count=state.count + 1, stats=new_sm3_stats)

    return optax.GradientTransformation(init_fn, update_fn)