File size: 5,491 Bytes
6742988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python
# coding: utf-8

# Uncomment to run on cpu
# import os
# os.environ["JAX_PLATFORM_NAME"] = "cpu"

import random

import gradio as gr
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image, ImageDraw, ImageFont

# ## CLIP Scoring
from transformers import BartTokenizer, CLIPProcessor, FlaxCLIPModel
from vqgan_jax.modeling_flax_vqgan import VQModel

from dalle_mini.model import CustomFlaxBartForConditionalGeneration

DALLE_REPO = "flax-community/dalle-mini"
DALLE_COMMIT_ID = "4d34126d0df8bc4a692ae933e3b902a1fa8b6114"

VQGAN_REPO = "flax-community/vqgan_f16_16384"
VQGAN_COMMIT_ID = "90cc46addd2dd8f5be21586a9a23e1b95aa506a9"

tokenizer = BartTokenizer.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID)
model = CustomFlaxBartForConditionalGeneration.from_pretrained(
    DALLE_REPO, revision=DALLE_COMMIT_ID
)
vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)


def captioned_strip(images, caption=None, rows=1):
    increased_h = 0 if caption is None else 48
    w, h = images[0].size[0], images[0].size[1]
    img = Image.new("RGB", (len(images) * w // rows, h * rows + increased_h))
    for i, img_ in enumerate(images):
        img.paste(img_, (i // rows * w, increased_h + (i % rows) * h))

    if caption is not None:
        draw = ImageDraw.Draw(img)
        font = ImageFont.truetype(
            "/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40
        )
        draw.text((20, 3), caption, (255, 255, 255), font=font)
    return img


def custom_to_pil(x):
    x = np.clip(x, 0.0, 1.0)
    x = (255 * x).astype(np.uint8)
    x = Image.fromarray(x)
    if not x.mode == "RGB":
        x = x.convert("RGB")
    return x


def generate(input, rng, params):
    return model.generate(
        **input,
        max_length=257,
        num_beams=1,
        do_sample=True,
        prng_key=rng,
        eos_token_id=50000,
        pad_token_id=50000,
        params=params,
    )


def get_images(indices, params):
    return vqgan.decode_code(indices, params=params)


p_generate = jax.pmap(generate, "batch")
p_get_images = jax.pmap(get_images, "batch")

bart_params = replicate(model.params)
vqgan_params = replicate(vqgan.params)

clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
print("Initialize FlaxCLIPModel")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
print("Initialize CLIPProcessor")


def hallucinate(prompt, num_images=64):
    prompt = [prompt] * jax.device_count()
    inputs = tokenizer(
        prompt,
        return_tensors="jax",
        padding="max_length",
        truncation=True,
        max_length=128,
    ).data
    inputs = shard(inputs)

    all_images = []
    for i in range(num_images // jax.device_count()):
        key = random.randint(0, 1e7)
        rng = jax.random.PRNGKey(key)
        rngs = jax.random.split(rng, jax.local_device_count())
        indices = p_generate(inputs, rngs, bart_params).sequences
        indices = indices[:, :, 1:]

        images = p_get_images(indices, vqgan_params)
        images = np.squeeze(np.asarray(images), 1)
        for image in images:
            all_images.append(custom_to_pil(image))
    return all_images


def clip_top_k(prompt, images, k=8):
    inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
    outputs = clip(**inputs)
    logits = outputs.logits_per_text
    scores = np.array(logits[0]).argsort()[-k:][::-1]
    return [images[score] for score in scores]


def compose_predictions(images, caption=None):
    increased_h = 0 if caption is None else 48
    w, h = images[0].size[0], images[0].size[1]
    img = Image.new("RGB", (len(images) * w, h + increased_h))
    for i, img_ in enumerate(images):
        img.paste(img_, (i * w, increased_h))

    if caption is not None:
        draw = ImageDraw.Draw(img)
        font = ImageFont.truetype(
            "/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40
        )
        draw.text((20, 3), caption, (255, 255, 255), font=font)
    return img


def top_k_predictions(prompt, num_candidates=32, k=8):
    images = hallucinate(prompt, num_images=num_candidates)
    images = clip_top_k(prompt, images, k=k)
    return images


def run_inference(prompt, num_images=32, num_preds=8):
    images = top_k_predictions(prompt, num_candidates=num_images, k=num_preds)
    predictions = captioned_strip(images)
    output_title = f"""
    <b>{prompt}</b>
    """
    return (output_title, predictions)


outputs = [
    gr.outputs.HTML(label=""),  # To be used as title
    gr.outputs.Image(label=""),
]

description = """
DALL路E-mini is an AI model that generates images from any prompt you give! Generate images from text:
"""
gr.Interface(
    run_inference,
    inputs=[gr.inputs.Textbox(label="What do you want to see?")],
    outputs=outputs,
    title="DALL路E mini",
    description=description,
    article="<p style='text-align: center'> Created by Boris Dayma et al. 2021 | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a> | <a href='https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA'>Report</a></p>",
    layout="vertical",
    theme="huggingface",
    examples=[
        ["an armchair in the shape of an avocado"],
        ["snowy mountains by the sea"],
    ],
    allow_flagging=False,
    live=False,
    # server_port=8999
).launch(share=True)