kunstnerfrits / src /dalle_mini /model /configuration.py
FritsLyneborg's picture
AI upload
6742988
raw
history blame
7.55 kB
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" DalleBart model configuration """
import warnings
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from .utils import PretrainedFromWandbMixin
logger = logging.get_logger(__name__)
class DalleBartConfig(PretrainedFromWandbMixin, PretrainedConfig):
model_type = "dallebart"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "encoder_attention_heads",
"hidden_size": "d_model",
}
def __init__(
self,
normalize_text=False,
encoder_vocab_size=50264,
image_vocab_size=16384, # encoded image token space
image_length=256, # number of encoded tokens
max_text_length=64, # max number of text tokens
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
scale_embedding=False,
gradient_checkpointing=False,
use_cache=True,
is_encoder_decoder=True,
forced_eos_token_id=None,
tie_word_embeddings=False, # different modalities and sizes
do_sample=True,
# transformer variants
use_bias=False, # use bias in attention and dense layers (except for lm_head)
ln_type="layernorm", # layer normalization type, "rmsnorm", "layernorm"
ln_positions="normformer", # layer normalization positions, "normformer", "swinv2", "cogview", "postln", "preln", "deepnet" (same as postln)
use_head_scale=False, # used in NormFormer
use_cosine_attention=False, # used in Swin v2
tau_init=0.05, # used only in cosine attention (Swin v2)
use_absolute_position_embeddings=True, # default
use_swin_position_embeddings=False, # used in Swin v1/v2
use_deepnet_scaling=False, # used in Deepnet
use_glu=False, # "GLU Variants Improve Transformer"
use_alibi=False, # Not implemented yet - from "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation"
sinkhorn_iters=1, # used in SinkFormers
use_final_ln_encoder=True, # final layer normalization in encoder
use_final_ln_decoder=True, # final layer normalization in decoder
# parameters that should not be necessary but could affect results
force_ln_scale=False, # force scale in layernorm even when followed by dense layers
**kwargs,
):
# text normalizer
self.normalize_text = normalize_text
# transformer variants
self.use_bias = use_bias
assert ln_type in [
"rmsnorm",
"layernorm",
], "ln_type must be 'rmsnorm' or 'layernorm'"
self.ln_type = ln_type
if ln_positions == "deepnet":
ln_positions = "postln"
assert ln_positions in [
"normformer",
"swinv2",
"cogview",
"postln",
"preln",
], "ln_positions must be 'normformer', 'swinv2', 'cogview', 'postln', 'preln'"
self.use_head_scale = use_head_scale
assert use_alibi is False, "use_alibi is not supported yet"
self.ln_positions = ln_positions
self.use_cosine_attention = use_cosine_attention
self.tau_init = tau_init
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.use_swin_position_embeddings = use_swin_position_embeddings
self.use_deepnet_scaling = use_deepnet_scaling
self.use_glu = use_glu
self.use_alibi = use_alibi
self.sinkhorn_iters = sinkhorn_iters
if ln_positions == "postln":
assert (
use_final_ln_encoder
), "use_final_ln_encoder must be True when ln_positions is 'postln'"
assert (
use_final_ln_decoder
), "use_final_ln_decoder must be True when ln_positions is 'postln'"
self.use_final_ln_encoder = use_final_ln_encoder
self.use_final_ln_decoder = use_final_ln_decoder
self.force_ln_scale = force_ln_scale
# common parameters
self.encoder_vocab_size = encoder_vocab_size
self.image_vocab_size = image_vocab_size
self.image_length = image_length
self.max_text_length = max_text_length
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.use_cache = use_cache
self.gradient_checkpointing = gradient_checkpointing
self.scale_embedding = (
scale_embedding # scale factor will be sqrt(d_model) if True
)
# special token id's are appended to vocab if not provided
decoder_start_token_id = kwargs.pop("decoder_start_token_id", image_vocab_size)
bos_token_id = kwargs.pop("bos_token_id", image_vocab_size)
pad_token_id = kwargs.pop("pad_token_id", image_vocab_size)
eos_token_id = kwargs.pop("eos_token_id", image_vocab_size)
# we generate to image_length + 1 (for bos) by default
min_length = kwargs.pop("min_length", image_length + 1)
max_length = kwargs.pop("max_length", image_length + 1)
super().__init__(
# args required in parent class
is_encoder_decoder=is_encoder_decoder,
tie_word_embeddings=tie_word_embeddings,
forced_eos_token_id=forced_eos_token_id,
decoder_start_token_id=decoder_start_token_id,
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
min_length=min_length,
max_length=max_length,
do_sample=do_sample,
**kwargs,
)
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get(
"force_bos_token_to_be_generated", False
):
self.forced_bos_token_id = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
"The config can simply be saved and uploaded again to be fixed."
)