FritsLyneborg's picture
AI upload
6742988
raw
history blame
7.39 kB
"""
Utilities for processing text.
"""
import html
import math
import random
import re
from pathlib import Path
import emoji
import ftfy
from huggingface_hub import hf_hub_download
from unidecode import unidecode
# based on wiki word occurence
person_token = [("a person", 282265), ("someone", 121194), ("somebody", 12219)]
temp_token = "xtokx" # avoid repeating chars
class HashtagProcessor:
# Adapted from wordninja library
# We use our wikipedia word count + a good heuristic to make it work
def __init__(self):
wiki_word_frequency = hf_hub_download(
"dalle-mini/dalle-mini", filename="enwiki-words-frequency.txt"
)
self._word_cost = (
l.split()[0]
for l in Path(wiki_word_frequency).read_text(encoding="utf8").splitlines()
)
self._word_cost = {
str(k): math.log(float(i + 1)) for i, k in enumerate(self._word_cost)
}
self._max_word = max(len(x) for x in self._word_cost.keys())
self._SPLIT_RE = re.compile("[^a-zA-Z0-9']+")
def __call__(self, s):
"""Uses dynamic programming to infer the location of spaces in a string without spaces."""
l = [self._split(x) for x in self._SPLIT_RE.split(s)]
return " ".join([item for sublist in l for item in sublist])
def _split(self, s):
# Find the best match for the i first characters, assuming cost has
# been built for the i-1 first characters.
# Returns a pair (match_cost, match_length).
def best_match(i):
candidates = enumerate(reversed(cost[max(0, i - self._max_word) : i]))
return min(
(c + self._word_cost.get(s[i - k - 1 : i].lower(), 9e999), k + 1)
for k, c in candidates
)
# Build the cost array
cost = [0]
for i in range(1, len(s) + 1):
c, k = best_match(i)
cost.append(c)
# Backtrack to recover the minimal-cost string.
out = []
i = len(s)
while i > 0:
c, k = best_match(i)
assert c == cost[i]
newToken = True
if not s[i - k : i] == "'": # ignore a lone apostrophe
if len(out) > 0:
# re-attach split 's and split digits
if out[-1] == "'s" or (
s[i - 1].isdigit() and out[-1][0].isdigit()
): # digit followed by digit
out[-1] = (
s[i - k : i] + out[-1]
) # combine current token with previous token
newToken = False
if newToken:
out.append(s[i - k : i])
i -= k
return reversed(out)
def replace_person_token(t):
"Used for CC12M"
t = re.sub("<person>([,\s]*(and)*[,\s]*<person>)+", " people ", t)
while "<person>" in t:
t = t.replace(
"<person>", f" {random.choices(*tuple(zip(*person_token)))[0]} ", 1
)
return t
def fix_html(t):
# from OpenAI CLIP
return html.unescape(html.unescape(t))
def replace_punctuation_with_commas(t):
return re.sub("[()[\].,|:;?!=+~\-\/{}]", ",", t)
def simplify_quotes(t):
return re.sub("""['"`]""", ' " ', t)
def merge_quotes(t):
return re.sub('(\s*"+\s*)+', ' " ', t)
def remove_comma_numbers(t):
def _f(t):
return re.sub("(\d),(\d{3})", r"\1\2", t)
return _f(_f(t))
def pre_process_dot_numbers(t):
return re.sub("(\w)\.(\w)", rf"\1{temp_token}dot{temp_token}\2", t)
def post_process_dot_numbers(t):
return re.sub(f"{temp_token}dot{temp_token}", ".", t)
def pre_process_quotes(t):
# allows quotes only for 's, 't, 'd, 'm, 'll, 're, 've
return re.sub(
r"'(?=([stdm]|(ll)|(re)|(ve)|(ll))\b)", rf"{temp_token}quote{temp_token}", t
)
def post_process_quotes(t):
return re.sub(f"{temp_token}quote{temp_token}", "'", t)
def pre_process_dates(t):
return re.sub("(\d)/(\d)", rf"\1{temp_token}slash{temp_token}\2", t)
def post_process_dates(t):
return re.sub(f"{temp_token}slash{temp_token}", "/", t)
def merge_commas(t):
return re.sub("(\s*,+\s*)+", ", ", t)
def add_space_after_commas(t):
return re.sub(",", ", ", t)
def handle_special_chars(t):
"Handle special characters"
# replace "-" with a space when between words without space
t = re.sub("(\w)-(\w)", r"\1 \2", t)
# always add space around some characters
return re.sub("([%&\/$*])", r" \1 ", t)
def expand_hashtags(t, hashtag_processor):
"Remove # and try to split words"
return re.sub("#(\w+)", lambda m: hashtag_processor(m.group(1)), t)
_re_ignore_chars = r"[_#\\]"
def ignore_chars(t):
"Ignore useless characters"
return re.sub(_re_ignore_chars, " ", t)
def remove_extra_spaces(t):
"Remove extra spaces (including \t and \n)"
return re.sub("\s+", " ", t)
def remove_repeating_chars(t):
"If the same character is present 4+ times (not 3 because of roman 'VIII'), replace with single instance"
return re.sub(r"(\D)(\1{3,})", r"\1", t)
def remove_urls(t):
return re.sub(r"http\S+", "", t)
def remove_html_tags(t):
return re.sub("<[^<]+?>", "", t)
def remove_first_last_commas(t):
t = t.strip()
t = t[:-1] if t and t[-1] == "," else t
t = t[1:] if t and t[0] == "," else t
return t.strip()
def remove_wiki_ref(t):
t = re.sub(r"\A\s*\[\d+\]", "", t)
return re.sub(r"\[\d+\]\s*\Z", "", t)
class TextNormalizer:
"Normalize text"
def __init__(self):
self._hashtag_processor = HashtagProcessor()
def __call__(self, t):
# fix some characters
t = ftfy.fix_text(t)
# fix html
t = fix_html(t)
# decode emojis (would be removed by unidecode)
t = emoji.demojize(t)
# decode and simplify text: see unidecode library
t = unidecode(t)
# lower case
t = t.lower()
# replace <PERSON> (for CC12M)
t = replace_person_token(t)
# remove wiki reference (for WIT)
t = remove_wiki_ref(t)
# remove html tags
t = remove_html_tags(t)
# remove urls
t = remove_urls(t)
# remove commas in numbers
t = remove_comma_numbers(t)
# handle dots in numbers and quotes - Part 1
t = pre_process_dot_numbers(t)
t = pre_process_quotes(t)
t = pre_process_dates(t)
# handle special characters
t = handle_special_chars(t)
# handle hashtags
t = expand_hashtags(t, self._hashtag_processor)
# ignore useless characters
t = ignore_chars(t)
# simplify quotes
t = simplify_quotes(t)
# all punctuation becomes commas
t = replace_punctuation_with_commas(t)
# handle dots in numbers and quotes - Part 2
t = post_process_dot_numbers(t)
t = post_process_quotes(t)
t = post_process_dates(t)
# handle repeating characters
t = remove_repeating_chars(t)
# merge quotes
t = merge_quotes(t)
# merge commas
t = merge_commas(t)
# remove multiple spaces
t = remove_extra_spaces(t)
# remove first and last comma
t = remove_first_last_commas(t)
# always start with a space
return f" {t}"