import sys
sys.path.append('./')
import gradio as gr
import random
import numpy as np
from gradio_demo.character_template import character_man, lorapath_man
from gradio_demo.character_template import character_woman, lorapath_woman
from gradio_demo.character_template import styles, lorapath_styles
import torch
import os
from typing import Tuple, List
import copy
import argparse
from diffusers.utils import load_image
import cv2
from PIL import Image
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from controlnet_aux import OpenposeDetector
from controlnet_aux.open_pose.body import Body
try:
from inference.models import YOLOWorld
from src.efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
from src.efficientvit.sam_model_zoo import create_sam_model
import supervision as sv
except:
print("YoloWorld can not be load")
try:
from groundingdino.models import build_model
from groundingdino.util import box_ops
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from groundingdino.util.inference import annotate, predict
from segment_anything import build_sam, SamPredictor
import groundingdino.datasets.transforms as T
except:
print("groundingdino can not be load")
from src.pipelines.lora_pipeline import LoraMultiConceptPipeline
from src.prompt_attention.p2p_attention import AttentionReplace
from diffusers import ControlNetModel, StableDiffusionXLPipeline
from src.pipelines.lora_pipeline import revise_regionally_controlnet_forward
CHARACTER_MAN_NAMES = list(character_man.keys())
CHARACTER_WOMAN_NAMES = list(character_woman.keys())
STYLE_NAMES = list(styles.keys())
MAX_SEED = np.iinfo(np.int32).max
### Description
title = r"""
OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models
"""
description = r"""
Official 🤗 Gradio demo for OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models.
How to use:
1. Select two characters.
2. Enter a text prompt as done in normal text-to-image models.
3. Click the Submit button to start customizing.
4. Enjoy the generated image😊!
"""
article = r"""
---
📝 **Citation**
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{,
title={OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models},
author={},
journal={},
year={}
}
```
"""
tips = r"""
### Usage tips of OMG
1. Input text prompts to describe a man and a woman
"""
css = '''
.gradio-container {width: 85% !important}
'''
def sample_image(pipe,
input_prompt,
input_neg_prompt=None,
generator=None,
concept_models=None,
num_inference_steps=50,
guidance_scale=7.5,
controller=None,
stage=None,
region_masks=None,
lora_list = None,
styleL=None,
**extra_kargs
):
spatial_condition = extra_kargs.pop('spatial_condition')
if spatial_condition is not None:
spatial_condition_input = [spatial_condition] * len(input_prompt)
else:
spatial_condition_input = None
images = pipe(
prompt=input_prompt,
concept_models=concept_models,
negative_prompt=input_neg_prompt,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
cross_attention_kwargs={"scale": 0.8},
controller=controller,
stage=stage,
region_masks=region_masks,
lora_list=lora_list,
styleL=styleL,
image=spatial_condition_input,
**extra_kargs).images
return images
def load_image_yoloworld(image_source) -> Tuple[np.array, torch.Tensor]:
image = np.asarray(image_source)
return image
def load_image_dino(image_source) -> Tuple[np.array, torch.Tensor]:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def predict_mask(segmentmodel, sam, image, TEXT_PROMPT, segmentType, confidence = 0.2, threshold = 0.5):
if segmentType=='GroundingDINO':
image_source, image = load_image_dino(image)
boxes, logits, phrases = predict(
model=segmentmodel,
image=image,
caption=TEXT_PROMPT,
box_threshold=0.3,
text_threshold=0.25
)
sam.set_image(image_source)
H, W, _ = image_source.shape
boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
transformed_boxes = sam.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).cuda()
masks, _, _ = sam.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
masks=masks[0].squeeze(0)
else:
image_source = load_image_yoloworld(image)
segmentmodel.set_classes([TEXT_PROMPT])
results = segmentmodel.infer(image_source, confidence=confidence)
detections = sv.Detections.from_inference(results).with_nms(
class_agnostic=True, threshold=threshold
)
masks = None
if len(detections) != 0:
print(TEXT_PROMPT + " detected!")
sam.set_image(image_source, image_format="RGB")
masks, _, _ = sam.predict(box=detections.xyxy[0], multimask_output=False)
masks = torch.from_numpy(masks.squeeze())
return masks
def prepare_text(prompt, region_prompts):
'''
Args:
prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text]
Returns:
full_prompt: subject1, attribute1 and subject2, attribute2, global text
context_prompt: subject1 and subject2, global text
entity_collection: [(subject1, attribute1), Location1]
'''
region_collection = []
regions = region_prompts.split('|')
for region in regions:
if region == '':
break
prompt_region, neg_prompt_region = region.split('-*-')
prompt_region = prompt_region.replace('[', '').replace(']', '')
neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '')
region_collection.append((prompt_region, neg_prompt_region))
return (prompt, region_collection)
def build_model_sd(pretrained_model, controlnet_path, device, prompts):
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16).to(device)
pipe = LoraMultiConceptPipeline.from_pretrained(
pretrained_model, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16").to(device)
controller = AttentionReplace(prompts, 50, cross_replace_steps={"default_": 1.}, self_replace_steps=0.4, tokenizer=pipe.tokenizer, device=device, dtype=torch.float16, width=1024//32, height=1024//32)
revise_regionally_controlnet_forward(pipe.unet, controller)
pipe_concept = StableDiffusionXLPipeline.from_pretrained(pretrained_model, torch_dtype=torch.float16,
variant="fp16").to(device)
return pipe, controller, pipe_concept
def build_model_lora(pipe_concept, lora_paths, style_path, condition, args):
pipe_list = []
if condition == "Human pose":
controlnet = ControlNetModel.from_pretrained(args.openpose_checkpoint, torch_dtype=torch.float16).to(device)
pipe_concept.controlnet = controlnet
elif condition == "Canny Edge":
controlnet = ControlNetModel.from_pretrained(args.canny_checkpoint, torch_dtype=torch.float16).to(device)
pipe_concept.controlnet = controlnet
elif condition == "Depth":
controlnet = ControlNetModel.from_pretrained(args.depth_checkpoint, torch_dtype=torch.float16).to(device)
pipe_concept.controlnet = controlnet
if style_path is not None and os.path.exists(style_path):
pipe_concept.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
for lora_path in lora_paths.split('|'):
adapter_name = lora_path.split('/')[-1].split('.')[0]
pipe_concept.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name=adapter_name)
pipe_concept.enable_xformers_memory_efficient_attention()
pipe_list.append(adapter_name)
return pipe_list
def build_yolo_segment_model(sam_path, device):
yolo_world = YOLOWorld(model_id="yolo_world/l")
sam = EfficientViTSamPredictor(
create_sam_model(name="xl1", weight_url=sam_path).to(device).eval()
)
return yolo_world, sam
def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'):
args = SLConfig.fromfile(ckpt_config_filename)
model = build_model(args)
args.device = device
checkpoint = torch.load(os.path.join(repo_id, filename), map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(filename, log))
_ = model.eval()
return model
def build_dino_segment_model(ckpt_repo_id, sam_checkpoint):
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
ckpt_config_filename = os.path.join(ckpt_repo_id, "GroundingDINO_SwinB.cfg.py")
groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename)
sam = build_sam(checkpoint=sam_checkpoint)
sam.cuda()
sam_predictor = SamPredictor(sam)
return groundingdino_model, sam_predictor
def main(device, segment_type):
pipe, controller, pipe_concept = build_model_sd(args.pretrained_sdxl_model, args.openpose_checkpoint, device, prompts_tmp)
if segment_type == 'GroundingDINO':
detect_model, sam = build_dino_segment_model(args.dino_checkpoint, args.sam_checkpoint)
else:
detect_model, sam = build_yolo_segment_model(args.efficientViT_checkpoint, device)
resolution_list = ["1440*728",
"1344*768",
"1216*832",
"1152*896",
"1024*1024",
"896*1152",
"832*1216",
"768*1344",
"728*1440"]
condition_list = ["None",
"Human pose",
"Canny Edge",
"Depth"]
depth_estimator = DPTForDepthEstimation.from_pretrained(args.dpt_checkpoint).to("cuda")
feature_extractor = DPTFeatureExtractor.from_pretrained(args.dpt_checkpoint)
body_model = Body(args.pose_detector_checkpoint)
openpose = OpenposeDetector(body_model)
def remove_tips():
return gr.update(visible=False)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_humanpose(img):
openpose_image = openpose(img)
return openpose_image
def get_cannyedge(image):
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image
def get_depth(image):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def generate_image(prompt1, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style):
try:
path1 = lorapath_man[man]
path2 = lorapath_woman[woman]
pipe_concept.unload_lora_weights()
pipe_list = build_model_lora(pipe_concept, path1 + "|" + path2, lorapath_styles[style], condition, args)
if lorapath_styles[style] is not None and os.path.exists(lorapath_styles[style]):
styleL = True
else:
styleL = False
input_list = [prompt1]
condition_list = [condition_img1]
output_list = []
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
kwargs = {
'height': height,
'width': width,
}
for prompt, condition_img in zip(input_list, condition_list):
if prompt!='':
input_prompt = []
p = '{prompt}, 35mm photograph, film, professional, 4k, highly detailed.'
if styleL:
p = styles[style] + p
input_prompt.append([p.replace("{prompt}", prompt), p.replace("{prompt}", prompt)])
input_prompt.append([(styles[style] + local_prompt1, character_man.get(man)[1]), (styles[style] + local_prompt2, character_woman.get(woman)[1])])
if condition == 'Human pose' and condition_img is not None:
spatial_condition = get_humanpose(condition_img).resize((width, height))
elif condition == 'Canny Edge' and condition_img is not None:
spatial_condition = get_cannyedge(condition_img).resize((width, height))
elif condition == 'Depth' and condition_img is not None:
spatial_condition = get_depth(condition_img).resize((width, height))
else:
spatial_condition = None
kwargs['spatial_condition'] = spatial_condition
controller.reset()
image = sample_image(
pipe,
input_prompt=input_prompt,
concept_models=pipe_concept,
input_neg_prompt=[negative_prompt] * len(input_prompt),
generator=torch.Generator(device).manual_seed(seed),
controller=controller,
stage=1,
lora_list=pipe_list,
styleL=styleL,
**kwargs)
controller.reset()
if pipe.tokenizer("man")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
mask1 = predict_mask(detect_model, sam, image[0], 'man', args.segment_type, confidence=0.15,
threshold=0.5)
else:
mask1 = None
if pipe.tokenizer("woman")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
mask2 = predict_mask(detect_model, sam, image[0], 'woman', args.segment_type, confidence=0.15,
threshold=0.5)
else:
mask2 = None
if mask1 is None and mask2 is None:
output_list.append(image[1])
else:
image = sample_image(
pipe,
input_prompt=input_prompt,
concept_models=pipe_concept,
input_neg_prompt=[negative_prompt] * len(input_prompt),
generator=torch.Generator(device).manual_seed(seed),
controller=controller,
stage=2,
region_masks=[mask1, mask2],
lora_list=pipe_list,
styleL=styleL,
**kwargs)
output_list.append(image[1])
else:
output_list.append(None)
output_list.append(spatial_condition)
return output_list
except:
print("error")
return
def get_local_value_man(input):
return character_man[input][0]
def get_local_value_woman(input):
return character_woman[input][0]
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
gallery = gr.Image(label="Generated Images", height=512, width=512)
gen_condition = gr.Image(label="Spatial Condition", height=512, width=512)
usage_tips = gr.Markdown(label="Usage tips of OMG", value=tips, visible=False)
with gr.Row():
condition_img1 = gr.Image(label="Input an RGB image for condition", height=128, width=128)
# character choose
with gr.Row():
man = gr.Dropdown(label="Character 1 selection", choices=CHARACTER_MAN_NAMES, value="Harry Potter (identifier: Harry Potter)")
woman = gr.Dropdown(label="Character 2 selection", choices=CHARACTER_WOMAN_NAMES, value="Hermione Granger (identifier: Hermione Granger)")
resolution = gr.Dropdown(label="Image Resolution (width*height)", choices=resolution_list, value="1024*1024")
condition = gr.Dropdown(label="Input condition type", choices=condition_list, value="None")
style = gr.Dropdown(label="style", choices=STYLE_NAMES, value="None")
with gr.Row():
local_prompt1 = gr.Textbox(label="Character1_prompt",
info="Describe the Character 1, this prompt should include the identifier of character 1",
value="Close-up photo of the Harry Potter, 35mm photograph, film, professional, 4k, highly detailed.")
local_prompt2 = gr.Textbox(label="Character2_prompt",
info="Describe the Character 2, this prompt should include the identifier of character2",
value="Close-up photo of the Hermione Granger, 35mm photograph, film, professional, 4k, highly detailed.")
man.change(get_local_value_man, man, local_prompt1)
woman.change(get_local_value_woman, woman, local_prompt2)
# prompt
with gr.Column():
prompt = gr.Textbox(label="Prompt 1",
info="Give a simple prompt to describe the first image content",
placeholder="Required",
value="close-up shot, photography, the cool man and beautiful woman as they accidentally discover a mysterious island while on vacation by the sea, facing the camera smiling")
with gr.Accordion(open=False, label="Advanced Options"):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
negative_prompt = gr.Textbox(label="Negative Prompt",
placeholder="noisy, blurry, soft, deformed, ugly",
value="noisy, blurry, soft, deformed, ugly")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
submit = gr.Button("Submit", variant="primary")
submit.click(
fn=remove_tips,
outputs=usage_tips,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[prompt, negative_prompt, man, woman, resolution, local_prompt1, local_prompt2, seed, condition, condition_img1, style],
outputs=[gallery, gen_condition]
)
demo.launch(server_name='0.0.0.0',server_port=7861, debug=True)
def parse_args():
parser = argparse.ArgumentParser('', add_help=False)
parser.add_argument('--pretrained_sdxl_model', default='./checkpoint/stable-diffusion-xl-base-1.0', type=str)
parser.add_argument('--openpose_checkpoint', default='./checkpoint/controlnet-openpose-sdxl-1.0', type=str)
parser.add_argument('--canny_checkpoint', default='./checkpoint/controlnet-canny-sdxl-1.0', type=str)
parser.add_argument('--depth_checkpoint', default='./checkpoint/controlnet-depth-sdxl-1.0', type=str)
parser.add_argument('--efficientViT_checkpoint', default='./checkpoint/sam/xl1.pt', type=str)
parser.add_argument('--dino_checkpoint', default='./checkpoint/GroundingDINO', type=str)
parser.add_argument('--sam_checkpoint', default='./checkpoint/sam/sam_vit_h_4b8939.pth', type=str)
parser.add_argument('--dpt_checkpoint', default='./checkpoint/dpt-hybrid-midas', type=str)
parser.add_argument('--pose_detector_checkpoint', default='./checkpoint/ControlNet/annotator/ckpts/body_pose_model.pth', type=str)
parser.add_argument('--prompt', default='Close-up photo of the cool man and beautiful woman in surprised expressions as they accidentally discover a mysterious island while on vacation by the sea, 35mm photograph, film, professional, 4k, highly detailed.', type=str)
parser.add_argument('--negative_prompt', default='noisy, blurry, soft, deformed, ugly', type=str)
parser.add_argument('--seed', default=22, type=int)
parser.add_argument('--suffix', default='', type=str)
parser.add_argument('--segment_type', default='yoloworld', help='GroundingDINO or yoloworld', type=str)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
prompts = [args.prompt]*2
prompts_tmp = copy.deepcopy(prompts)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
main(device, args.segment_type)