import gradio as gr import pandas as pd import torch import numpy as np from PIL import Image from diffusers import DiffusionPipeline from huggingface_hub import login import gradio as gr import torch import numpy as np from PIL import Image from datasets import load_dataset from diffusers import StableDiffusionImg2ImgPipeline import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler model_id = "stabilityai/stable-diffusion-2-1" device = "cpu" # DPM-Solver++ scheduler'ını kullan, torch_dtype belirtme pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(device) def resize(value,img): img = Image.open(img) img = img.resize((value,value)) return img def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength): generator = torch.Generator(device).manual_seed(seed) source_image = resize(768, source_img) source_image.save('source.png') image = pipe(prompt, negative_prompt=negative_prompt, init_image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0] return image gr.Interface( fn=infer, inputs=[ gr.inputs.Image(type="filepath", label="Raw Image. Must Be .png"), # Güncellenmiş kullanım gr.Textbox(label='Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'), gr.Slider(2, 15, value=7, label='Guidance Scale'), gr.Slider(1, 25, value=10, step=1, label='Number of Iterations'), gr.Slider(label="Seed", minimum=0, maximum=987654321987654321, step=1, randomize=True), gr.Slider(label='Strength', minimum=0, maximum=1, step=.05, value=.5) ], outputs='image', title="Stable Diffusion 2.1 Image to Image Pipeline on CPU", description="For more information on Stable Diffusion 2.1 see https://github.com/Stability-AI/stablediffusion" ).launch()