File size: 39,480 Bytes
431084f
e6b8403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
 
 
431084f
 
e6b8403
431084f
e6b8403
431084f
e6b8403
431084f
 
 
 
e6b8403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431084f
e6b8403
431084f
 
e6b8403
 
 
 
29264b8
431084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
 
431084f
e6b8403
431084f
e6b8403
431084f
e6b8403
 
27ad614
431084f
 
26bfa39
e6b8403
2b3b3fc
431084f
e6b8403
 
431084f
 
e6b8403
 
431084f
 
 
e6b8403
 
 
431084f
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
 
431084f
 
 
e6b8403
 
 
 
431084f
 
e6b8403
 
 
 
 
431084f
e6b8403
 
431084f
e6b8403
 
 
 
 
 
 
 
 
 
 
 
431084f
 
 
 
 
e6b8403
 
 
 
 
 
 
 
 
431084f
e6b8403
 
431084f
e6b8403
 
 
 
 
 
 
 
 
 
 
 
431084f
e6b8403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431084f
e6b8403
 
 
 
 
 
 
 
431084f
e6b8403
 
 
 
 
 
 
 
 
431084f
e6b8403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431084f
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
 
 
431084f
e6b8403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784108
e6b8403
431084f
 
e6b8403
431084f
 
 
e6b8403
 
 
431084f
e6b8403
 
 
 
431084f
 
 
 
e6b8403
431084f
 
e6b8403
431084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
8e6c9a4
e6b8403
 
 
431084f
 
 
 
 
e6b8403
 
 
 
431084f
 
 
e6b8403
 
 
431084f
 
e6b8403
 
 
 
 
 
 
 
431084f
 
e6b8403
 
 
 
 
431084f
 
 
e6b8403
431084f
 
 
e6b8403
 
 
 
 
 
 
 
431084f
 
e6b8403
 
431084f
e6b8403
 
431084f
e6b8403
 
 
 
431084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
431084f
 
e6b8403
431084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
 
 
 
 
431084f
e6b8403
8e6c9a4
e6b8403
431084f
 
 
 
 
 
 
 
e6b8403
 
 
 
 
431084f
 
e6b8403
 
 
431084f
 
e6b8403
 
 
 
 
 
 
 
431084f
 
e6b8403
 
 
 
431084f
 
 
 
e6b8403
431084f
 
 
e6b8403
 
 
 
 
 
 
 
431084f
 
e6b8403
431084f
 
e6b8403
 
 
431084f
 
 
 
 
 
 
e6b8403
 
 
 
 
431084f
 
 
 
e6b8403
431084f
 
 
e6b8403
 
 
 
 
 
 
431084f
 
 
 
e6b8403
431084f
 
 
 
e6b8403
431084f
 
 
e6b8403
 
 
 
 
 
 
431084f
 
 
 
e6b8403
 
431084f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
#%cd SoniTranslate
import numpy as np
import gradio as gr
import whisperx
import torch
from gtts import gTTS
import librosa
import edge_tts
import asyncio
import gc
from pydub import AudioSegment
from tqdm import tqdm
from deep_translator import GoogleTranslator
import os
from soni_translate.audio_segments import create_translated_audio
from soni_translate.text_to_speech import make_voice_gradio
from soni_translate.translate_segments import translate_text

title = "<center><strong><font size='7'>📽️ SoniTranslate 🈷️</font></strong></center>"

news = """ ## 📖 News
        🔥 2023/07/26: new UI and mix options add.
        """

description = """ 
### 🎥 **Translate videos easily with SoniTranslate!** 📽️

Upload a video or provide a video link. Limitation: 10 seconds for CPU, but no restrictions with a GPU.

For faster results and no duration limits, try the Colab notebook with a GPU:
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://github.com/R3gm/SoniTranslate/blob/main/SoniTranslate_Colab.ipynb)

📽️ **This a demo of SoniTranslate; GitHub repository: [SoniTranslate](https://github.com/R3gm/SoniTranslate)!**

See the tab labeled 'Help' for instructions on how to use it. Let's start having fun with video translation! 🚀🎉
"""



tutorial = """ 
## 🔰 **Instructions for use:**

1. 📤 **Upload a video** on the first tab or 🌐 **use a video link** on the second tab.

2. 🌍 Choose the language in which you want to **translate the video**.

3. 🗣️ Specify the **number of people speaking** in the video and **assign each one a text-to-speech voice** suitable for the translation language.

4. 🚀 Press the '**Translate**' button to obtain the results.
"""



# Check GPU
if torch.cuda.is_available():
    device = "cuda"
    list_compute_type = ['float16', 'float32']
    compute_type_default = 'float16'
    whisper_model_default = 'large-v1'
else:
    device = "cpu"
    list_compute_type = ['float32']
    compute_type_default = 'float32'
    whisper_model_default = 'base'
print('Working in: ', device)

list_tts = ['af-ZA-AdriNeural-Female', 'af-ZA-WillemNeural-Male', 'am-ET-AmehaNeural-Male', 'am-ET-MekdesNeural-Female', 'ar-AE-FatimaNeural-Female', 'ar-AE-HamdanNeural-Male', 'ar-BH-AliNeural-Male', 'ar-BH-LailaNeural-Female', 'ar-DZ-AminaNeural-Female', 'ar-DZ-IsmaelNeural-Male', 'ar-EG-SalmaNeural-Female', 'ar-EG-ShakirNeural-Male', 'ar-IQ-BasselNeural-Male', 'ar-IQ-RanaNeural-Female', 'ar-JO-SanaNeural-Female', 'ar-JO-TaimNeural-Male', 'ar-KW-FahedNeural-Male', 'ar-KW-NouraNeural-Female', 'ar-LB-LaylaNeural-Female', 'ar-LB-RamiNeural-Male', 'ar-LY-ImanNeural-Female', 'ar-LY-OmarNeural-Male', 'ar-MA-JamalNeural-Male', 'ar-MA-MounaNeural-Female', 'ar-OM-AbdullahNeural-Male', 'ar-OM-AyshaNeural-Female', 'ar-QA-AmalNeural-Female', 'ar-QA-MoazNeural-Male', 'ar-SA-HamedNeural-Male', 'ar-SA-ZariyahNeural-Female', 'ar-SY-AmanyNeural-Female', 'ar-SY-LaithNeural-Male', 'ar-TN-HediNeural-Male', 'ar-TN-ReemNeural-Female', 'ar-YE-MaryamNeural-Female', 'ar-YE-SalehNeural-Male', 'az-AZ-BabekNeural-Male', 'az-AZ-BanuNeural-Female', 'bg-BG-BorislavNeural-Male', 'bg-BG-KalinaNeural-Female', 'bn-BD-NabanitaNeural-Female', 'bn-BD-PradeepNeural-Male', 'bn-IN-BashkarNeural-Male', 'bn-IN-TanishaaNeural-Female', 'bs-BA-GoranNeural-Male', 'bs-BA-VesnaNeural-Female', 'ca-ES-EnricNeural-Male', 'ca-ES-JoanaNeural-Female', 'cs-CZ-AntoninNeural-Male', 'cs-CZ-VlastaNeural-Female', 'cy-GB-AledNeural-Male', 'cy-GB-NiaNeural-Female', 'da-DK-ChristelNeural-Female', 'da-DK-JeppeNeural-Male', 'de-AT-IngridNeural-Female', 'de-AT-JonasNeural-Male', 'de-CH-JanNeural-Male', 'de-CH-LeniNeural-Female', 'de-DE-AmalaNeural-Female', 'de-DE-ConradNeural-Male', 'de-DE-KatjaNeural-Female', 'de-DE-KillianNeural-Male', 'el-GR-AthinaNeural-Female', 'el-GR-NestorasNeural-Male', 'en-AU-NatashaNeural-Female', 'en-AU-WilliamNeural-Male', 'en-CA-ClaraNeural-Female', 'en-CA-LiamNeural-Male', 'en-GB-LibbyNeural-Female', 'en-GB-MaisieNeural-Female', 'en-GB-RyanNeural-Male', 'en-GB-SoniaNeural-Female', 'en-GB-ThomasNeural-Male', 'en-HK-SamNeural-Male', 'en-HK-YanNeural-Female', 'en-IE-ConnorNeural-Male', 'en-IE-EmilyNeural-Female', 'en-IN-NeerjaExpressiveNeural-Female', 'en-IN-NeerjaNeural-Female', 'en-IN-PrabhatNeural-Male', 'en-KE-AsiliaNeural-Female', 'en-KE-ChilembaNeural-Male', 'en-NG-AbeoNeural-Male', 'en-NG-EzinneNeural-Female', 'en-NZ-MitchellNeural-Male', 'en-NZ-MollyNeural-Female', 'en-PH-JamesNeural-Male', 'en-PH-RosaNeural-Female', 'en-SG-LunaNeural-Female', 'en-SG-WayneNeural-Male', 'en-TZ-ElimuNeural-Male', 'en-TZ-ImaniNeural-Female', 'en-US-AnaNeural-Female', 'en-US-AriaNeural-Female', 'en-US-ChristopherNeural-Male', 'en-US-EricNeural-Male', 'en-US-GuyNeural-Male', 'en-US-JennyNeural-Female', 'en-US-MichelleNeural-Female', 'en-US-RogerNeural-Male', 'en-US-SteffanNeural-Male', 'en-ZA-LeahNeural-Female', 'en-ZA-LukeNeural-Male', 'es-AR-ElenaNeural-Female', 'es-AR-TomasNeural-Male', 'es-BO-MarceloNeural-Male', 'es-BO-SofiaNeural-Female', 'es-CL-CatalinaNeural-Female', 'es-CL-LorenzoNeural-Male', 'es-CO-GonzaloNeural-Male', 'es-CO-SalomeNeural-Female', 'es-CR-JuanNeural-Male', 'es-CR-MariaNeural-Female', 'es-CU-BelkysNeural-Female', 'es-CU-ManuelNeural-Male', 'es-DO-EmilioNeural-Male', 'es-DO-RamonaNeural-Female', 'es-EC-AndreaNeural-Female', 'es-EC-LuisNeural-Male', 'es-ES-AlvaroNeural-Male', 'es-ES-ElviraNeural-Female', 'es-GQ-JavierNeural-Male', 'es-GQ-TeresaNeural-Female', 'es-GT-AndresNeural-Male', 'es-GT-MartaNeural-Female', 'es-HN-CarlosNeural-Male', 'es-HN-KarlaNeural-Female', 'es-MX-DaliaNeural-Female', 'es-MX-JorgeNeural-Male', 'es-NI-FedericoNeural-Male', 'es-NI-YolandaNeural-Female', 'es-PA-MargaritaNeural-Female', 'es-PA-RobertoNeural-Male', 'es-PE-AlexNeural-Male', 'es-PE-CamilaNeural-Female', 'es-PR-KarinaNeural-Female', 'es-PR-VictorNeural-Male', 'es-PY-MarioNeural-Male', 'es-PY-TaniaNeural-Female', 'es-SV-LorenaNeural-Female', 'es-SV-RodrigoNeural-Male', 'es-US-AlonsoNeural-Male', 'es-US-PalomaNeural-Female', 'es-UY-MateoNeural-Male', 'es-UY-ValentinaNeural-Female', 'es-VE-PaolaNeural-Female', 'es-VE-SebastianNeural-Male', 'et-EE-AnuNeural-Female', 'et-EE-KertNeural-Male', 'fa-IR-DilaraNeural-Female', 'fa-IR-FaridNeural-Male', 'fi-FI-HarriNeural-Male', 'fi-FI-NooraNeural-Female', 'fil-PH-AngeloNeural-Male', 'fil-PH-BlessicaNeural-Female', 'fr-BE-CharlineNeural-Female', 'fr-BE-GerardNeural-Male', 'fr-CA-AntoineNeural-Male', 'fr-CA-JeanNeural-Male', 'fr-CA-SylvieNeural-Female', 'fr-CH-ArianeNeural-Female', 'fr-CH-FabriceNeural-Male', 'fr-FR-DeniseNeural-Female', 'fr-FR-EloiseNeural-Female', 'fr-FR-HenriNeural-Male', 'ga-IE-ColmNeural-Male', 'ga-IE-OrlaNeural-Female', 'gl-ES-RoiNeural-Male', 'gl-ES-SabelaNeural-Female', 'gu-IN-DhwaniNeural-Female', 'gu-IN-NiranjanNeural-Male', 'he-IL-AvriNeural-Male', 'he-IL-HilaNeural-Female', 'hi-IN-MadhurNeural-Male', 'hi-IN-SwaraNeural-Female', 'hr-HR-GabrijelaNeural-Female', 'hr-HR-SreckoNeural-Male', 'hu-HU-NoemiNeural-Female', 'hu-HU-TamasNeural-Male', 'id-ID-ArdiNeural-Male', 'id-ID-GadisNeural-Female', 'is-IS-GudrunNeural-Female', 'is-IS-GunnarNeural-Male', 'it-IT-DiegoNeural-Male', 'it-IT-ElsaNeural-Female', 'it-IT-IsabellaNeural-Female', 'ja-JP-KeitaNeural-Male', 'ja-JP-NanamiNeural-Female', 'jv-ID-DimasNeural-Male', 'jv-ID-SitiNeural-Female', 'ka-GE-EkaNeural-Female', 'ka-GE-GiorgiNeural-Male', 'kk-KZ-AigulNeural-Female', 'kk-KZ-DauletNeural-Male', 'km-KH-PisethNeural-Male', 'km-KH-SreymomNeural-Female', 'kn-IN-GaganNeural-Male', 'kn-IN-SapnaNeural-Female', 'ko-KR-InJoonNeural-Male', 'ko-KR-SunHiNeural-Female', 'lo-LA-ChanthavongNeural-Male', 'lo-LA-KeomanyNeural-Female', 'lt-LT-LeonasNeural-Male', 'lt-LT-OnaNeural-Female', 'lv-LV-EveritaNeural-Female', 'lv-LV-NilsNeural-Male', 'mk-MK-AleksandarNeural-Male', 'mk-MK-MarijaNeural-Female', 'ml-IN-MidhunNeural-Male', 'ml-IN-SobhanaNeural-Female', 'mn-MN-BataaNeural-Male', 'mn-MN-YesuiNeural-Female', 'mr-IN-AarohiNeural-Female', 'mr-IN-ManoharNeural-Male', 'ms-MY-OsmanNeural-Male', 'ms-MY-YasminNeural-Female', 'mt-MT-GraceNeural-Female', 'mt-MT-JosephNeural-Male', 'my-MM-NilarNeural-Female', 'my-MM-ThihaNeural-Male', 'nb-NO-FinnNeural-Male', 'nb-NO-PernilleNeural-Female', 'ne-NP-HemkalaNeural-Female', 'ne-NP-SagarNeural-Male', 'nl-BE-ArnaudNeural-Male', 'nl-BE-DenaNeural-Female', 'nl-NL-ColetteNeural-Female', 'nl-NL-FennaNeural-Female', 'nl-NL-MaartenNeural-Male', 'pl-PL-MarekNeural-Male', 'pl-PL-ZofiaNeural-Female', 'ps-AF-GulNawazNeural-Male', 'ps-AF-LatifaNeural-Female', 'pt-BR-AntonioNeural-Male', 'pt-BR-FranciscaNeural-Female', 'pt-PT-DuarteNeural-Male', 'pt-PT-RaquelNeural-Female', 'ro-RO-AlinaNeural-Female', 'ro-RO-EmilNeural-Male', 'ru-RU-DmitryNeural-Male', 'ru-RU-SvetlanaNeural-Female', 'si-LK-SameeraNeural-Male', 'si-LK-ThiliniNeural-Female', 'sk-SK-LukasNeural-Male', 'sk-SK-ViktoriaNeural-Female', 'sl-SI-PetraNeural-Female', 'sl-SI-RokNeural-Male', 'so-SO-MuuseNeural-Male', 'so-SO-UbaxNeural-Female', 'sq-AL-AnilaNeural-Female', 'sq-AL-IlirNeural-Male', 'sr-RS-NicholasNeural-Male', 'sr-RS-SophieNeural-Female', 'su-ID-JajangNeural-Male', 'su-ID-TutiNeural-Female', 'sv-SE-MattiasNeural-Male', 'sv-SE-SofieNeural-Female', 'sw-KE-RafikiNeural-Male', 'sw-KE-ZuriNeural-Female', 'sw-TZ-DaudiNeural-Male', 'sw-TZ-RehemaNeural-Female', 'ta-IN-PallaviNeural-Female', 'ta-IN-ValluvarNeural-Male', 'ta-LK-KumarNeural-Male', 'ta-LK-SaranyaNeural-Female', 'ta-MY-KaniNeural-Female', 'ta-MY-SuryaNeural-Male', 'ta-SG-AnbuNeural-Male', 'ta-SG-VenbaNeural-Female', 'te-IN-MohanNeural-Male', 'te-IN-ShrutiNeural-Female', 'th-TH-NiwatNeural-Male', 'th-TH-PremwadeeNeural-Female', 'tr-TR-AhmetNeural-Male', 'tr-TR-EmelNeural-Female', 'uk-UA-OstapNeural-Male', 'uk-UA-PolinaNeural-Female', 'ur-IN-GulNeural-Female', 'ur-IN-SalmanNeural-Male', 'ur-PK-AsadNeural-Male', 'ur-PK-UzmaNeural-Female', 'uz-UZ-MadinaNeural-Female', 'uz-UZ-SardorNeural-Male', 'vi-VN-HoaiMyNeural-Female', 'vi-VN-NamMinhNeural-Male', 'zh-CN-XiaoxiaoNeural-Female', 'zh-CN-XiaoyiNeural-Female', 'zh-CN-YunjianNeural-Male', 'zh-CN-YunxiNeural-Male', 'zh-CN-YunxiaNeural-Male', 'zh-CN-YunyangNeural-Male', 'zh-CN-liaoning-XiaobeiNeural-Female', 'zh-CN-shaanxi-XiaoniNeural-Female']

'''
def translate_from_video(video, WHISPER_MODEL_SIZE, batch_size, compute_type,
                         TRANSLATE_AUDIO_TO, min_speakers, max_speakers,
                         tts_voice00, tts_voice01,tts_voice02,tts_voice03,tts_voice04,tts_voice05):

    YOUR_HF_TOKEN = os.getenv("My_hf_token")

    create_translated_audio(result_diarize, audio_files, Output_name_file)

    os.system("rm audio_dub_stereo.wav")
    os.system("ffmpeg -i audio_dub_solo.wav -ac 1 audio_dub_stereo.wav")

    os.system(f"rm {mix_audio}")
    os.system(f'ffmpeg -y -i audio.wav -i audio_dub_stereo.wav -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')

    os.system(f"rm {video_output}")
    os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")

    return video_output
'''

def translate_from_video(
    video,
    YOUR_HF_TOKEN,
    preview=False,
    WHISPER_MODEL_SIZE="large-v1",
    batch_size=16,
    compute_type="float16",
    SOURCE_LANGUAGE= "Automatic detection",
    TRANSLATE_AUDIO_TO="English (en)",
    min_speakers=1,
    max_speakers=2,
    tts_voice00="en-AU-WilliamNeural-Male",
    tts_voice01="en-CA-ClaraNeural-Female",
    tts_voice02="en-GB-ThomasNeural-Male",
    tts_voice03="en-GB-SoniaNeural-Female",
    tts_voice04="en-NZ-MitchellNeural-Male",
    tts_voice05="en-GB-MaisieNeural-Female",
    video_output="video_dub.mp4",
    AUDIO_MIX_METHOD='Adjusting volumes and mixing audio',
    ):

    if YOUR_HF_TOKEN == "" or YOUR_HF_TOKEN == None:
      YOUR_HF_TOKEN = os.getenv("YOUR_HF_TOKEN")
      if YOUR_HF_TOKEN == None:
        print('No valid token')
        return 

    if "SET_LIMIT" == os.getenv("DEMO"):
      preview=True
      print("DEMO; set preview=True; The generation is **limited to 10 seconds** to prevent errors with the CPU. If you use a GPU, you won't have any of these limitations.")
      AUDIO_MIX_METHOD='Adjusting volumes and mixing audio'
      print("DEMO; set Adjusting volumes and mixing audio")

    LANGUAGES = {
        'Automatic detection': 'Automatic detection',
        'English (en)': 'en',
        'French (fr)': 'fr',
        'German (de)': 'de',
        'Spanish (es)': 'es',
        'Italian (it)': 'it',
        'Japanese (ja)': 'ja',
        'Chinese (zh)': 'zh',
        'Dutch (nl)': 'nl',
        'Ukrainian (uk)': 'uk',
        'Portuguese (pt)': 'pt'
    }

    TRANSLATE_AUDIO_TO = LANGUAGES[TRANSLATE_AUDIO_TO]
    SOURCE_LANGUAGE = LANGUAGES[SOURCE_LANGUAGE]


    if not os.path.exists('audio'):
        os.makedirs('audio')

    if not os.path.exists('audio2/audio'):
        os.makedirs('audio2/audio')

    # Check GPU
    device = "cuda" if torch.cuda.is_available() else "cpu"
    compute_type = "float32" if device == "cpu" else compute_type

    OutputFile = 'Video.mp4'
    audio_wav = "audio.wav"
    Output_name_file = "audio_dub_solo.ogg"
    mix_audio = "audio_mix.mp3"

    os.system("rm Video.mp4")
    os.system("rm audio.webm")
    os.system("rm audio.wav")

    if os.path.exists(video):
        if preview:
            print('Creating a preview video of 10 seconds, to disable this option, go to advanced settings and turn off preview.')
            os.system(f'ffmpeg -y -i "{video}" -ss 00:00:20 -t 00:00:10 -c:v libx264 -c:a aac -strict experimental Video.mp4')
        else:
            os.system(f'ffmpeg -y -i "{video}" -c:v libx264 -c:a aac -strict experimental Video.mp4')

        os.system("ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav")
    else:
        if preview:
            print('Creating a preview from the link, 10 seconds to disable this option, go to advanced settings and turn off preview.')
            #https://github.com/yt-dlp/yt-dlp/issues/2220
            mp4_ = f'yt-dlp -f "mp4" --downloader ffmpeg --downloader-args "ffmpeg_i: -ss 00:00:20 -t 00:00:10" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
            wav_ = "ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav"
            os.system(mp4_)
            os.system(wav_)
        else:
            mp4_ = f'yt-dlp -f "mp4" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
            wav_ = f'python -m yt_dlp --output {audio_wav} --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --extract-audio --audio-format wav {video}'

            os.system(wav_)

            for i in range (120):
                time.sleep(1)
                print('process audio...')
                if os.path.exists(audio_wav) and not os.path.exists('audio.webm'):
                    time.sleep(1)
                    os.system(mp4_)
                    break
                if i == 119:
                  print('Error donwloading the audio')
                  return

    print("Set file complete.")

    SOURCE_LANGUAGE = None if SOURCE_LANGUAGE == 'Automatic detection' else SOURCE_LANGUAGE

    # 1. Transcribe with original whisper (batched)
    model = whisperx.load_model(
        WHISPER_MODEL_SIZE,
        device,
        compute_type=compute_type,
        language= SOURCE_LANGUAGE,
        )
    audio = whisperx.load_audio(audio_wav)
    result = model.transcribe(audio, batch_size=batch_size)
    gc.collect(); torch.cuda.empty_cache(); del model
    print("Transcript complete")

    # 2. Align whisper output
    model_a, metadata = whisperx.load_align_model(
        language_code=result["language"],
        device=device
        )
    result = whisperx.align(
        result["segments"],
        model_a,
        metadata,
        audio,
        device,
        return_char_alignments=True,
        )
    gc.collect(); torch.cuda.empty_cache(); del model_a
    print("Align complete")

    if result['segments'] == []:
      print('No active speech found in audio')
      return

    # 3. Assign speaker labels
    diarize_model = whisperx.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
    diarize_segments = diarize_model(
        audio_wav,
        min_speakers=min_speakers,
        max_speakers=max_speakers)
    result_diarize = whisperx.assign_word_speakers(diarize_segments, result)
    gc.collect(); torch.cuda.empty_cache(); del diarize_model
    print("Diarize complete")

    result_diarize['segments'] = translate_text(result_diarize['segments'], TRANSLATE_AUDIO_TO)
    print("Translation complete")

    audio_files = []

    # Mapping speakers to voice variables
    speaker_to_voice = {
        'SPEAKER_00': tts_voice00,
        'SPEAKER_01': tts_voice01,
        'SPEAKER_02': tts_voice02,
        'SPEAKER_03': tts_voice03,
        'SPEAKER_04': tts_voice04,
        'SPEAKER_05': tts_voice05
    }

    for segment in tqdm(result_diarize['segments']):

        text = segment['text']
        start = segment['start']
        end = segment['end']

        try:
            speaker = segment['speaker']
        except KeyError:
            segment['speaker'] = "SPEAKER_99"
            speaker = segment['speaker']
            print("NO SPEAKER DETECT IN SEGMENT")

        # make the tts audio
        filename = f"audio/{start}.ogg"

        if speaker in speaker_to_voice and speaker_to_voice[speaker] != 'None':
            make_voice_gradio(text, speaker_to_voice[speaker], filename, TRANSLATE_AUDIO_TO)
        elif speaker == "SPEAKER_99":
            try:
                tts = gTTS(text, lang=TRANSLATE_AUDIO_TO)
                tts.save(filename)
                print('Using GTTS')
            except:
                tts = gTTS('a', lang=TRANSLATE_AUDIO_TO)
                tts.save(filename)
                print('Error: Audio will be replaced.')

        # duration
        duration_true = end - start
        duration_tts = librosa.get_duration(filename=filename)

        # porcentaje
        porcentaje = duration_tts / duration_true

        if porcentaje > 2.1:
            porcentaje = 2.1
        elif porcentaje <= 1.2 and porcentaje >= 0.8:
            porcentaje = 1.0
        elif porcentaje <= 0.79:
            porcentaje = 0.8

        # Smoth and round
        porcentaje = round(porcentaje+0.0, 1)

        # apply aceleration or opposite to the audio file in audio2 folder
        os.system(f"ffmpeg -y -loglevel panic -i {filename} -filter:a atempo={porcentaje} audio2/{filename}")

        duration_create = librosa.get_duration(filename=f"audio2/{filename}")
        audio_files.append(filename)

    # replace files with the accelerates
    os.system("mv -f audio2/audio/*.ogg audio/")

    os.system(f"rm {Output_name_file}")
    create_translated_audio(result_diarize, audio_files, Output_name_file)

    os.system(f"rm {mix_audio}")

    # TYPE MIX AUDIO
    if AUDIO_MIX_METHOD == 'Adjusting volumes and mixing audio':
        # volume mix
        os.system(f'ffmpeg -y -i {audio_wav} -i {Output_name_file} -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')
    else:
        try:
            # background mix
            os.system(f'ffmpeg -i {audio_wav} -i {Output_name_file} -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress=threshold=0.003:ratio=20[bg]; [bg][mix]amerge[final]" -map [final] {mix_audio}')
        except:
            # volume mix except
            os.system(f'ffmpeg -y -i {audio_wav} -i {Output_name_file} -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')

    os.system(f"rm {video_output}")
    os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")

    return video_output

import sys

class Logger:
    def __init__(self, filename):
        self.terminal = sys.stdout
        self.log = open(filename, "w")

    def write(self, message):
        self.terminal.write(message)
        self.log.write(message)

    def flush(self):
        self.terminal.flush()
        self.log.flush()

    def isatty(self):
        return False

sys.stdout = Logger("output.log")

def read_logs():
    sys.stdout.flush()
    with open("output.log", "r") as f:
        return f.read()

# max tts
MAX_TTS = 6

theme='Taithrah/Minimal'

with gr.Blocks(theme=theme) as demo:
    gr.Markdown(title)
    gr.Markdown(description)

#### video
    with gr.Tab("Translate audio from video"):
        with gr.Row():
            with gr.Column():
                video_input = gr.Video() # height=300,width=300
                SOURCE_LANGUAGE = gr.Dropdown(['Automatic detection', 'English (en)', 'French (fr)', 'German (de)', 'Spanish (es)', 'Italian (it)', 'Japanese (ja)', 'Chinese (zh)', 'Dutch (nl)', 'Ukrainian (uk)', 'Portuguese (pt)'], value='Automatic detection',label = 'Source language', info="This is the original language of the video")
                TRANSLATE_AUDIO_TO = gr.Dropdown(['English (en)', 'French (fr)', 'German (de)', 'Spanish (es)', 'Italian (it)', 'Japanese (ja)', 'Chinese (zh)', 'Dutch (nl)', 'Ukrainian (uk)', 'Portuguese (pt)'], value='English (en)',label = 'Translate audio to', info="Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.")

                line_ = gr.HTML("<hr></h2>")
                gr.Markdown("Select how many people are speaking in the video.")
                min_speakers = gr.Slider(1, MAX_TTS, default=1, label="min_speakers", step=1, visible=False)
                max_speakers = gr.Slider(1, MAX_TTS, value=2, step=1, label="Max speakers", interative=True)
                gr.Markdown("Select the voice you want for each speaker.")
                def submit(value):
                    visibility_dict = {
                        f'tts_voice{i:02d}': gr.update(visible=i < value) for i in range(6)
                    }
                    return [value for value in visibility_dict.values()]
                tts_voice00 = gr.Dropdown(list_tts, value='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1', visible=True, interactive= True)
                tts_voice01 = gr.Dropdown(list_tts, value='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2', visible=True, interactive= True)
                tts_voice02 = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3', visible=False, interactive= True)
                tts_voice03 = gr.Dropdown(list_tts, value='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4', visible=False, interactive= True)
                tts_voice04 = gr.Dropdown(list_tts, value='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5', visible=False, interactive= True)
                tts_voice05 = gr.Dropdown(list_tts, value='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6', visible=False, interactive= True)
                max_speakers.change(submit, max_speakers, [tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05])

                with gr.Column():
                      with gr.Accordion("Advanced Settings", open=False):
                        
                          AUDIO_MIX = gr.Dropdown(['Mixing audio with sidechain compression', 'Adjusting volumes and mixing audio'], value='Adjusting volumes and mixing audio', label = 'Audio Mixing Method', info="Mix original and translated audio files to create a customized, balanced output with two available mixing modes.")
                          
                          gr.HTML("<hr></h2>")
                          gr.Markdown("Default configuration of Whisper.")
                          WHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model")
                          batch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1)
                          compute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type")
                          
                          gr.HTML("<hr></h2>")
                          VIDEO_OUTPUT_NAME = gr.Textbox(label="Translated file name" ,value="video_output.mp4", info="The name of the output file")
                          PREVIEW = gr.Checkbox(label="Preview", info="Preview cuts the video to only 10 seconds for testing purposes. Please deactivate it to retrieve the full video duration.")

            with gr.Column(variant='compact'):
                with gr.Row():
                    video_button = gr.Button("TRANSLATE", )
                with gr.Row():
                    video_output = gr.Video()

                line_ = gr.HTML("<hr></h2>")
                if os.getenv("YOUR_HF_TOKEN") == None or os.getenv("YOUR_HF_TOKEN") == "":
                  HFKEY = gr.Textbox(visible= True, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
                else:
                  HFKEY = gr.Textbox(visible= False, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")

                gr.Examples(
                    examples=[
                        [
                            "./assets/Video_main.mp4",
                            "",
                            True,
                            "base",
                            16,
                            "float32",
                            "Spanish (es)",
                            "English (en)",
                            1,
                            2,
                            'en-AU-WilliamNeural-Male',
                            'en-CA-ClaraNeural-Female',
                            'en-GB-ThomasNeural-Male',
                            'en-GB-SoniaNeural-Female',
                            'en-NZ-MitchellNeural-Male',
                            'en-GB-MaisieNeural-Female',
                            "video_output.mp4",
                            'Adjusting volumes and mixing audio',
                        ],
                    ],
                    fn=translate_from_video,
                    inputs=[
                    video_input,
                    HFKEY,
                    PREVIEW,
                    WHISPER_MODEL_SIZE,
                    batch_size,
                    compute_type,
                    SOURCE_LANGUAGE,
                    TRANSLATE_AUDIO_TO,
                    min_speakers,
                    max_speakers,
                    tts_voice00,
                    tts_voice01,
                    tts_voice02,
                    tts_voice03,
                    tts_voice04,
                    tts_voice05,
                    VIDEO_OUTPUT_NAME,
                    AUDIO_MIX,
                    ],
                    outputs=[video_output],
                    cache_examples=False,
                )

### link

    with gr.Tab("Translate audio from video link"):
        with gr.Row():
            with gr.Column():

                blink_input = gr.Textbox(label="Media link.", info="Example: www.youtube.com/watch?v=g_9rPvbENUw", placeholder="URL goes here...")
                # bSOURCE_LANGUAGE = gr.Dropdown(['Automatic detection', 'en', 'fr', 'de', 'es', 'it', 'ja', 'zh', 'nl', 'uk', 'pt'], value='en',label = 'Source language')

                # gr.HTML("<hr></h2>")

                # bHFKEY = gr.Textbox(label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")

                # gr.Markdown("Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.")
                # bTRANSLATE_AUDIO_TO = gr.inputs.Dropdown(['en', 'fr', 'de', 'es', 'it', 'ja', 'zh', 'nl', 'uk', 'pt'], default='en',label = 'Translate audio to')

                # gr.Markdown("Select how many people are speaking in the video.")
                # bmin_speakers = gr.inputs.Slider(1, 6, default=1, label="min_speakers", step=1, )
                # bmax_speakers = gr.inputs.Slider(1, 6, default=2, label="max_speakers",step=1)

                # gr.Markdown("Select the voice you want for each speaker.")
                # btts_voice00 = gr.inputs.Dropdown(list_tts, default='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1')
                # btts_voice01 = gr.inputs.Dropdown(list_tts, default='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2')
                # btts_voice02 = gr.inputs.Dropdown(list_tts, default='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3')
                # btts_voice03 = gr.inputs.Dropdown(list_tts, default='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4')
                # btts_voice04 = gr.inputs.Dropdown(list_tts, default='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5')
                # btts_voice05 = gr.inputs.Dropdown(list_tts, default='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6')

                # with gr.Column():
                #       with gr.Accordion("Advanced Settings", open=False):
                #           gr.Markdown("Default configuration of Whisper.")
                #           bWHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model")
                #           bbatch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1)
                #           bcompute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type")

                #           bPREVIEW = gr.inputs.Checkbox(label="Preview cuts the video to only 10 seconds for testing purposes. Please deactivate it to retrieve the full video duration.")
                #           bVIDEO_OUTPUT_NAME = gr.Textbox(label="Translated file name" ,value="video_output.mp4")

                bSOURCE_LANGUAGE = gr.Dropdown(['Automatic detection', 'English (en)', 'French (fr)', 'German (de)', 'Spanish (es)', 'Italian (it)', 'Japanese (ja)', 'Chinese (zh)', 'Dutch (nl)', 'Ukrainian (uk)', 'Portuguese (pt)'], value='Automatic detection',label = 'Source language', info="This is the original language of the video")
                bTRANSLATE_AUDIO_TO = gr.Dropdown(['English (en)', 'French (fr)', 'German (de)', 'Spanish (es)', 'Italian (it)', 'Japanese (ja)', 'Chinese (zh)', 'Dutch (nl)', 'Ukrainian (uk)', 'Portuguese (pt)'], value='English (en)',label = 'Translate audio to', info="Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.")

                bline_ = gr.HTML("<hr></h2>")
                gr.Markdown("Select how many people are speaking in the video.")
                bmin_speakers = gr.Slider(1, MAX_TTS, default=1, label="min_speakers", step=1, visible=False)
                bmax_speakers = gr.Slider(1, MAX_TTS, value=2, step=1, label="Max speakers", interative=True)
                gr.Markdown("Select the voice you want for each speaker.")
                def bsubmit(value):
                    visibility_dict = {
                        f'btts_voice{i:02d}': gr.update(visible=i < value) for i in range(6)
                    }
                    return [value for value in visibility_dict.values()]
                btts_voice00 = gr.Dropdown(list_tts, value='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1', visible=True, interactive= True)
                btts_voice01 = gr.Dropdown(list_tts, value='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2', visible=True, interactive= True)
                btts_voice02 = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3', visible=False, interactive= True)
                btts_voice03 = gr.Dropdown(list_tts, value='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4', visible=False, interactive= True)
                btts_voice04 = gr.Dropdown(list_tts, value='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5', visible=False, interactive= True)
                btts_voice05 = gr.Dropdown(list_tts, value='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6', visible=False, interactive= True)
                bmax_speakers.change(bsubmit, bmax_speakers, [btts_voice00, btts_voice01, btts_voice02, btts_voice03, btts_voice04, btts_voice05])


                with gr.Column():
                      with gr.Accordion("Advanced Settings", open=False):
                          
                          bAUDIO_MIX = gr.Dropdown(['Mixing audio with sidechain compression', 'Adjusting volumes and mixing audio'], value='Adjusting volumes and mixing audio', label = 'Audio Mixing Method', info="Mix original and translated audio files to create a customized, balanced output with two available mixing modes.")

                          gr.HTML("<hr></h2>")
                          gr.Markdown("Default configuration of Whisper.")
                          bWHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model")
                          bbatch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1)
                          bcompute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type")

                          gr.HTML("<hr></h2>")
                          bVIDEO_OUTPUT_NAME = gr.Textbox(label="Translated file name" ,value="video_output.mp4", info="The name of the output file")
                          bPREVIEW = gr.Checkbox(label="Preview", info="Preview cuts the video to only 10 seconds for testing purposes. Please deactivate it to retrieve the full video duration.")



                # text_button = gr.Button("Translate audio of video")
                # link_output = gr.Video() #gr.outputs.File(label="Download!")



            with gr.Column(variant='compact'):
                with gr.Row():
                    text_button = gr.Button("TRANSLATE")
                with gr.Row():
                    blink_output = gr.Video() #gr.outputs.File(label="Download!") # gr.Video()


                bline_ = gr.HTML("<hr></h2>")
                if os.getenv("YOUR_HF_TOKEN") == None or os.getenv("YOUR_HF_TOKEN") == "":
                  bHFKEY = gr.Textbox(visible= True, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
                else:
                  bHFKEY = gr.Textbox(visible= False, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")

                gr.Examples(
                    examples=[
                        [
                            "https://www.youtube.com/watch?v=5ZeHtRKHl7Y",
                            "",
                            True,
                            "base",
                            16,
                            "float32",
                            "Japanese (ja)",
                            "English (en)",
                            1,
                            2,
                            'en-CA-ClaraNeural-Female',
                            'en-AU-WilliamNeural-Male',
                            'en-GB-ThomasNeural-Male',
                            'en-GB-SoniaNeural-Female',
                            'en-NZ-MitchellNeural-Male',
                            'en-GB-MaisieNeural-Female',
                            "video_output.mp4",
                            'Adjusting volumes and mixing audio',
                        ],
                    ],
                    fn=translate_from_video,
                    inputs=[
                    blink_input,
                    bHFKEY,
                    bPREVIEW,
                    bWHISPER_MODEL_SIZE,
                    bbatch_size,
                    bcompute_type,
                    bSOURCE_LANGUAGE,
                    bTRANSLATE_AUDIO_TO,
                    bmin_speakers,
                    bmax_speakers,
                    btts_voice00,
                    btts_voice01,
                    btts_voice02,
                    btts_voice03,
                    btts_voice04,
                    btts_voice05,
                    bVIDEO_OUTPUT_NAME,
                    bAUDIO_MIX
                    ],
                    outputs=[blink_output],
                    cache_examples=False,
                )




    with gr.Tab("Help"):
        gr.Markdown(news)
        gr.Markdown(tutorial)

    with gr.Accordion("Logs", open = False):
        logs = gr.Textbox()
        demo.load(read_logs, None, logs, every=1)

    # run
    video_button.click(translate_from_video, inputs=[
        video_input,
        HFKEY,
        PREVIEW,
        WHISPER_MODEL_SIZE,
        batch_size,
        compute_type,
        SOURCE_LANGUAGE,
        TRANSLATE_AUDIO_TO,
        min_speakers,
        max_speakers,
        tts_voice00,
        tts_voice01,
        tts_voice02,
        tts_voice03,
        tts_voice04,
        tts_voice05,
        VIDEO_OUTPUT_NAME,
        AUDIO_MIX,
        ], outputs=video_output)
    text_button.click(translate_from_video, inputs=[
        blink_input,
        bHFKEY,
        bPREVIEW,
        bWHISPER_MODEL_SIZE,
        bbatch_size,
        bcompute_type,
        bSOURCE_LANGUAGE,
        bTRANSLATE_AUDIO_TO,
        bmin_speakers,
        bmax_speakers,
        btts_voice00,
        btts_voice01,
        btts_voice02,
        btts_voice03,
        btts_voice04,
        btts_voice05,
        bVIDEO_OUTPUT_NAME,
        bAUDIO_MIX,
        ], outputs=blink_output)

demo.launch(enable_queue=True)
#demo.launch()