Spaces:
Running
Running
File size: 17,673 Bytes
b152010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
import gc
import hashlib
import os
import queue
import threading
import json
import shlex
import sys
import subprocess
import librosa
import numpy as np
import soundfile as sf
import torch
from tqdm import tqdm
try:
from .utils import (
remove_directory_contents,
create_directories,
)
except: # noqa
from utils import (
remove_directory_contents,
create_directories,
)
from .logging_setup import logger
try:
import onnxruntime as ort
except Exception as error:
logger.error(str(error))
# import warnings
# warnings.filterwarnings("ignore")
stem_naming = {
"Vocals": "Instrumental",
"Other": "Instruments",
"Instrumental": "Vocals",
"Drums": "Drumless",
"Bass": "Bassless",
}
class MDXModel:
def __init__(
self,
device,
dim_f,
dim_t,
n_fft,
hop=1024,
stem_name=None,
compensation=1.000,
):
self.dim_f = dim_f
self.dim_t = dim_t
self.dim_c = 4
self.n_fft = n_fft
self.hop = hop
self.stem_name = stem_name
self.compensation = compensation
self.n_bins = self.n_fft // 2 + 1
self.chunk_size = hop * (self.dim_t - 1)
self.window = torch.hann_window(
window_length=self.n_fft, periodic=True
).to(device)
out_c = self.dim_c
self.freq_pad = torch.zeros(
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
).to(device)
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(
x,
n_fft=self.n_fft,
hop_length=self.hop,
window=self.window,
center=True,
return_complex=True,
)
x = torch.view_as_real(x)
x = x.permute([0, 3, 1, 2])
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
[-1, 4, self.n_bins, self.dim_t]
)
return x[:, :, : self.dim_f]
def istft(self, x, freq_pad=None):
freq_pad = (
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
if freq_pad is None
else freq_pad
)
x = torch.cat([x, freq_pad], -2)
# c = 4*2 if self.target_name=='*' else 2
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
[-1, 2, self.n_bins, self.dim_t]
)
x = x.permute([0, 2, 3, 1])
x = x.contiguous()
x = torch.view_as_complex(x)
x = torch.istft(
x,
n_fft=self.n_fft,
hop_length=self.hop,
window=self.window,
center=True,
)
return x.reshape([-1, 2, self.chunk_size])
class MDX:
DEFAULT_SR = 44100
# Unit: seconds
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
def __init__(
self, model_path: str, params: MDXModel, processor=0
):
# Set the device and the provider (CPU or CUDA)
self.device = (
torch.device(f"cuda:{processor}")
if processor >= 0
else torch.device("cpu")
)
self.provider = (
["CUDAExecutionProvider"]
if processor >= 0
else ["CPUExecutionProvider"]
)
self.model = params
# Load the ONNX model using ONNX Runtime
self.ort = ort.InferenceSession(model_path, providers=self.provider)
# Preload the model for faster performance
self.ort.run(
None,
{"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()},
)
self.process = lambda spec: self.ort.run(
None, {"input": spec.cpu().numpy()}
)[0]
self.prog = None
@staticmethod
def get_hash(model_path):
try:
with open(model_path, "rb") as f:
f.seek(-10000 * 1024, 2)
model_hash = hashlib.md5(f.read()).hexdigest()
except: # noqa
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
return model_hash
@staticmethod
def segment(
wave,
combine=True,
chunk_size=DEFAULT_CHUNK_SIZE,
margin_size=DEFAULT_MARGIN_SIZE,
):
"""
Segment or join segmented wave array
Args:
wave: (np.array) Wave array to be segmented or joined
combine: (bool) If True, combines segmented wave array.
If False, segments wave array.
chunk_size: (int) Size of each segment (in samples)
margin_size: (int) Size of margin between segments (in samples)
Returns:
numpy array: Segmented or joined wave array
"""
if combine:
# Initializing as None instead of [] for later numpy array concatenation
processed_wave = None
for segment_count, segment in enumerate(wave):
start = 0 if segment_count == 0 else margin_size
end = None if segment_count == len(wave) - 1 else -margin_size
if margin_size == 0:
end = None
if processed_wave is None: # Create array for first segment
processed_wave = segment[:, start:end]
else: # Concatenate to existing array for subsequent segments
processed_wave = np.concatenate(
(processed_wave, segment[:, start:end]), axis=-1
)
else:
processed_wave = []
sample_count = wave.shape[-1]
if chunk_size <= 0 or chunk_size > sample_count:
chunk_size = sample_count
if margin_size > chunk_size:
margin_size = chunk_size
for segment_count, skip in enumerate(
range(0, sample_count, chunk_size)
):
margin = 0 if segment_count == 0 else margin_size
end = min(skip + chunk_size + margin_size, sample_count)
start = skip - margin
cut = wave[:, start:end].copy()
processed_wave.append(cut)
if end == sample_count:
break
return processed_wave
def pad_wave(self, wave):
"""
Pad the wave array to match the required chunk size
Args:
wave: (np.array) Wave array to be padded
Returns:
tuple: (padded_wave, pad, trim)
- padded_wave: Padded wave array
- pad: Number of samples that were padded
- trim: Number of samples that were trimmed
"""
n_sample = wave.shape[1]
trim = self.model.n_fft // 2
gen_size = self.model.chunk_size - 2 * trim
pad = gen_size - n_sample % gen_size
# Padded wave
wave_p = np.concatenate(
(
np.zeros((2, trim)),
wave,
np.zeros((2, pad)),
np.zeros((2, trim)),
),
1,
)
mix_waves = []
for i in range(0, n_sample + pad, gen_size):
waves = np.array(wave_p[:, i:i + self.model.chunk_size])
mix_waves.append(waves)
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(
self.device
)
return mix_waves, pad, trim
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
"""
Process each wave segment in a multi-threaded environment
Args:
mix_waves: (torch.Tensor) Wave segments to be processed
trim: (int) Number of samples trimmed during padding
pad: (int) Number of samples padded during padding
q: (queue.Queue) Queue to hold the processed wave segments
_id: (int) Identifier of the processed wave segment
Returns:
numpy array: Processed wave segment
"""
mix_waves = mix_waves.split(1)
with torch.no_grad():
pw = []
for mix_wave in mix_waves:
self.prog.update()
spec = self.model.stft(mix_wave)
processed_spec = torch.tensor(self.process(spec))
processed_wav = self.model.istft(
processed_spec.to(self.device)
)
processed_wav = (
processed_wav[:, :, trim:-trim]
.transpose(0, 1)
.reshape(2, -1)
.cpu()
.numpy()
)
pw.append(processed_wav)
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
q.put({_id: processed_signal})
return processed_signal
def process_wave(self, wave: np.array, mt_threads=1):
"""
Process the wave array in a multi-threaded environment
Args:
wave: (np.array) Wave array to be processed
mt_threads: (int) Number of threads to be used for processing
Returns:
numpy array: Processed wave array
"""
self.prog = tqdm(total=0)
chunk = wave.shape[-1] // mt_threads
waves = self.segment(wave, False, chunk)
# Create a queue to hold the processed wave segments
q = queue.Queue()
threads = []
for c, batch in enumerate(waves):
mix_waves, pad, trim = self.pad_wave(batch)
self.prog.total = len(mix_waves) * mt_threads
thread = threading.Thread(
target=self._process_wave, args=(mix_waves, trim, pad, q, c)
)
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
self.prog.close()
processed_batches = []
while not q.empty():
processed_batches.append(q.get())
processed_batches = [
list(wave.values())[0]
for wave in sorted(
processed_batches, key=lambda d: list(d.keys())[0]
)
]
assert len(processed_batches) == len(
waves
), "Incomplete processed batches, please reduce batch size!"
return self.segment(processed_batches, True, chunk)
def run_mdx(
model_params,
output_dir,
model_path,
filename,
exclude_main=False,
exclude_inversion=False,
suffix=None,
invert_suffix=None,
denoise=False,
keep_orig=True,
m_threads=2,
device_base="cuda",
):
if device_base == "cuda":
device = torch.device("cuda:0")
processor_num = 0
device_properties = torch.cuda.get_device_properties(device)
vram_gb = device_properties.total_memory / 1024**3
m_threads = 1 if vram_gb < 8 else 2
else:
device = torch.device("cpu")
processor_num = -1
m_threads = 1
model_hash = MDX.get_hash(model_path)
mp = model_params.get(model_hash)
model = MDXModel(
device,
dim_f=mp["mdx_dim_f_set"],
dim_t=2 ** mp["mdx_dim_t_set"],
n_fft=mp["mdx_n_fft_scale_set"],
stem_name=mp["primary_stem"],
compensation=mp["compensate"],
)
mdx_sess = MDX(model_path, model, processor=processor_num)
wave, sr = librosa.load(filename, mono=False, sr=44100)
# normalizing input wave gives better output
peak = max(np.max(wave), abs(np.min(wave)))
wave /= peak
if denoise:
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (
mdx_sess.process_wave(wave, m_threads)
)
wave_processed *= 0.5
else:
wave_processed = mdx_sess.process_wave(wave, m_threads)
# return to previous peak
wave_processed *= peak
stem_name = model.stem_name if suffix is None else suffix
main_filepath = None
if not exclude_main:
main_filepath = os.path.join(
output_dir,
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
)
sf.write(main_filepath, wave_processed.T, sr)
invert_filepath = None
if not exclude_inversion:
diff_stem_name = (
stem_naming.get(stem_name)
if invert_suffix is None
else invert_suffix
)
stem_name = (
f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
)
invert_filepath = os.path.join(
output_dir,
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
)
sf.write(
invert_filepath,
(-wave_processed.T * model.compensation) + wave.T,
sr,
)
if not keep_orig:
os.remove(filename)
del mdx_sess, wave_processed, wave
gc.collect()
torch.cuda.empty_cache()
return main_filepath, invert_filepath
MDX_DOWNLOAD_LINK = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/"
UVR_MODELS = [
"UVR-MDX-NET-Voc_FT.onnx",
"UVR_MDXNET_KARA_2.onnx",
"Reverb_HQ_By_FoxJoy.onnx",
"UVR-MDX-NET-Inst_HQ_4.onnx",
]
BASE_DIR = "." # os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
mdxnet_models_dir = os.path.join(BASE_DIR, "mdx_models")
output_dir = os.path.join(BASE_DIR, "clean_song_output")
def convert_to_stereo_and_wav(audio_path):
wave, sr = librosa.load(audio_path, mono=False, sr=44100)
# check if mono
if type(wave[0]) != np.ndarray or audio_path[-4:].lower() != ".wav": # noqa
stereo_path = f"{os.path.splitext(audio_path)[0]}_stereo.wav"
stereo_path = os.path.join(output_dir, stereo_path)
command = shlex.split(
f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}"'
)
sub_params = {
"stdout": subprocess.PIPE,
"stderr": subprocess.PIPE,
"creationflags": subprocess.CREATE_NO_WINDOW
if sys.platform == "win32"
else 0,
}
process_wav = subprocess.Popen(command, **sub_params)
output, errors = process_wav.communicate()
if process_wav.returncode != 0 or not os.path.exists(stereo_path):
raise Exception("Error processing audio to stereo wav")
return stereo_path
else:
return audio_path
def process_uvr_task(
orig_song_path: str = "aud_test.mp3",
main_vocals: bool = False,
dereverb: bool = True,
song_id: str = "mdx", # folder output name
only_voiceless: bool = False,
remove_files_output_dir: bool = False,
):
if os.environ.get("SONITR_DEVICE") == "cpu":
device_base = "cpu"
else:
device_base = "cuda" if torch.cuda.is_available() else "cpu"
if remove_files_output_dir:
remove_directory_contents(output_dir)
with open(os.path.join(mdxnet_models_dir, "data.json")) as infile:
mdx_model_params = json.load(infile)
song_output_dir = os.path.join(output_dir, song_id)
create_directories(song_output_dir)
orig_song_path = convert_to_stereo_and_wav(orig_song_path)
logger.debug(f"onnxruntime device >> {ort.get_device()}")
if only_voiceless:
logger.info("Voiceless Track Separation...")
return run_mdx(
mdx_model_params,
song_output_dir,
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Inst_HQ_4.onnx"),
orig_song_path,
suffix="Voiceless",
denoise=False,
keep_orig=True,
exclude_inversion=True,
device_base=device_base,
)
logger.info("Vocal Track Isolation and Voiceless Track Separation...")
vocals_path, instrumentals_path = run_mdx(
mdx_model_params,
song_output_dir,
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Voc_FT.onnx"),
orig_song_path,
denoise=True,
keep_orig=True,
device_base=device_base,
)
if main_vocals:
logger.info("Main Voice Separation from Supporting Vocals...")
backup_vocals_path, main_vocals_path = run_mdx(
mdx_model_params,
song_output_dir,
os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"),
vocals_path,
suffix="Backup",
invert_suffix="Main",
denoise=True,
device_base=device_base,
)
else:
backup_vocals_path, main_vocals_path = None, vocals_path
if dereverb:
logger.info("Vocal Clarity Enhancement through De-Reverberation...")
_, vocals_dereverb_path = run_mdx(
mdx_model_params,
song_output_dir,
os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"),
main_vocals_path,
invert_suffix="DeReverb",
exclude_main=True,
denoise=True,
device_base=device_base,
)
else:
vocals_dereverb_path = main_vocals_path
return (
vocals_path,
instrumentals_path,
backup_vocals_path,
main_vocals_path,
vocals_dereverb_path,
)
if __name__ == "__main__":
from utils import download_manager
for id_model in UVR_MODELS:
download_manager(
os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir
)
(
vocals_path_,
instrumentals_path_,
backup_vocals_path_,
main_vocals_path_,
vocals_dereverb_path_,
) = process_uvr_task(
orig_song_path="aud.mp3",
main_vocals=True,
dereverb=True,
song_id="mdx",
remove_files_output_dir=True,
)
|