Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import pandas as pd | |
import numpy as np | |
def calc_matches(filtered_df, project_df, similarity_matrix, top_x): | |
# matching project2 can be nay project | |
# indecies (rows) = project1 | |
# columns = project2 | |
# -> find matches | |
# filter out all row considering the filter | |
filtered_df_indecies_list = filtered_df.index | |
project_df_indecies_list = project_df.index | |
np.fill_diagonal(similarity_matrix, 0) | |
match_matrix = similarity_matrix[filtered_df_indecies_list, :][:, project_df_indecies_list] | |
best_matches_list = np.argsort(match_matrix, axis=None) | |
if len(best_matches_list) < top_x: | |
top_x = len(best_matches_list) | |
# get row (project1) and column (project2) with highest similarity in filtered df | |
top_indices = np.unravel_index(best_matches_list[-top_x:], match_matrix.shape) | |
# get the corresponding similarity values | |
top_values = match_matrix[top_indices] | |
p1_df = filtered_df.iloc[top_indices[0]] | |
p1_df["similarity"] = top_values | |
p2_df = project_df.iloc[top_indices[1]] | |
p2_df["similarity"] = top_values | |
return p1_df, p2_df | |