Jan Mühlnikel
commited on
Commit
•
d551fc8
1
Parent(s):
9dcd3f9
added crs filter
Browse files- similarity_page.py +175 -0
similarity_page.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Page for similarities
|
3 |
+
"""
|
4 |
+
|
5 |
+
################
|
6 |
+
# DEPENDENCIES #
|
7 |
+
################
|
8 |
+
import streamlit as st
|
9 |
+
import pandas as pd
|
10 |
+
from scipy.sparse import load_npz
|
11 |
+
import pickle
|
12 |
+
import faiss
|
13 |
+
from sentence_transformers import SentenceTransformer
|
14 |
+
import modules.result_table as result_table
|
15 |
+
import modules.semantic_search as semantic_search
|
16 |
+
from functions.filter_projects import filter_projects
|
17 |
+
import psutil
|
18 |
+
import os
|
19 |
+
|
20 |
+
def get_process_memory():
|
21 |
+
process = psutil.Process(os.getpid())
|
22 |
+
return process.memory_info().rss / (1024 * 1024)
|
23 |
+
|
24 |
+
# Catch DATA
|
25 |
+
# Load Similarity matrix
|
26 |
+
@st.cache_data
|
27 |
+
def load_sim_matrix():
|
28 |
+
loaded_matrix = load_npz("src/similarities.npz")
|
29 |
+
dense_matrix = loaded_matrix.toarray()
|
30 |
+
|
31 |
+
return dense_matrix
|
32 |
+
|
33 |
+
# Load Projects DFs
|
34 |
+
@st.cache_data
|
35 |
+
def load_projects():
|
36 |
+
orgas_df = pd.read_csv("src/projects/project_orgas.csv")
|
37 |
+
region_df = pd.read_csv("src/projects/project_region.csv")
|
38 |
+
sector_df = pd.read_csv("src/projects/project_sector.csv")
|
39 |
+
status_df = pd.read_csv("src/projects/project_status.csv")
|
40 |
+
texts_df = pd.read_csv("src/projects/project_texts.csv")
|
41 |
+
|
42 |
+
projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner')
|
43 |
+
projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner')
|
44 |
+
projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner')
|
45 |
+
projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner')
|
46 |
+
|
47 |
+
return projects_df
|
48 |
+
|
49 |
+
# Load CRS 3 data
|
50 |
+
@st.cache_data
|
51 |
+
def getCRS3():
|
52 |
+
# Read in CRS3 CODELISTS
|
53 |
+
crs3_df = pd.read_csv('src/codelists/crs3_codes.csv')
|
54 |
+
CRS3_CODES = crs3_df['code'].tolist()
|
55 |
+
CRS3_NAME = crs3_df['name'].tolist()
|
56 |
+
CRS3_MERGED = {f"{name} - {code}": code for name, code in zip(CRS3_NAME, CRS3_CODES)}
|
57 |
+
|
58 |
+
return CRS3_MERGED
|
59 |
+
|
60 |
+
# Load CRS 5 data
|
61 |
+
@st.cache_data
|
62 |
+
def getCRS5():
|
63 |
+
# Read in CRS3 CODELISTS
|
64 |
+
crs5_df = pd.read_csv('src/codelists/crs5_codes.csv')
|
65 |
+
CRS5_CODES = crs5_df['code'].tolist()
|
66 |
+
CRS5_NAME = crs5_df['name'].tolist()
|
67 |
+
CRS5_MERGED = {code: [f"{name} - {code}"] for name, code in zip(CRS5_NAME, CRS5_CODES)}
|
68 |
+
|
69 |
+
return CRS5_MERGED
|
70 |
+
|
71 |
+
# Load SDG data
|
72 |
+
@st.cache_data
|
73 |
+
def getSDG():
|
74 |
+
# Read in SDG CODELISTS
|
75 |
+
sdg_df = pd.read_csv('src/codelists/sdg_goals.csv')
|
76 |
+
SDG_NAMES = sdg_df['name'].tolist()
|
77 |
+
|
78 |
+
return SDG_NAMES
|
79 |
+
|
80 |
+
# Load Sentence Transformer Model
|
81 |
+
@st.cache_resource
|
82 |
+
def load_model():
|
83 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
84 |
+
return model
|
85 |
+
|
86 |
+
|
87 |
+
# Load Embeddings
|
88 |
+
@st.cache_data
|
89 |
+
def load_embeddings_and_index():
|
90 |
+
# Load embeddings
|
91 |
+
with open("src/embeddings.pkl", "rb") as fIn:
|
92 |
+
stored_data = pickle.load(fIn)
|
93 |
+
sentences = stored_data["sentences"]
|
94 |
+
embeddings = stored_data["embeddings"]
|
95 |
+
|
96 |
+
# Load or create FAISS index
|
97 |
+
dimension = embeddings.shape[1]
|
98 |
+
faiss_index = faiss.IndexFlatL2(dimension)
|
99 |
+
faiss_index.add(embeddings)
|
100 |
+
|
101 |
+
return sentences, embeddings, faiss_index
|
102 |
+
|
103 |
+
# USE CACHE FUNCTIONS
|
104 |
+
sim_matrix = load_sim_matrix()
|
105 |
+
projects_df = load_projects()
|
106 |
+
|
107 |
+
CRS3_MERGED = getCRS3()
|
108 |
+
CRS5_MERGED = getCRS5()
|
109 |
+
SDG_NAMES = getSDG()
|
110 |
+
|
111 |
+
model = load_model()
|
112 |
+
sentences, embeddings, faiss_index = load_embeddings_and_index()
|
113 |
+
|
114 |
+
def show_page():
|
115 |
+
st.write(f"Current RAM usage of this app: {get_process_memory():.2f} MB")
|
116 |
+
st.write("Similarities")
|
117 |
+
|
118 |
+
col1, col2 = st.columns([1, 1])
|
119 |
+
with col1:
|
120 |
+
# CRS 3 SELECTION
|
121 |
+
crs3_option = st.multiselect(
|
122 |
+
'CRS 3',
|
123 |
+
CRS3_MERGED,
|
124 |
+
placeholder="Select"
|
125 |
+
)
|
126 |
+
|
127 |
+
with col2:
|
128 |
+
st.write("x")
|
129 |
+
|
130 |
+
|
131 |
+
# CRS CODE LIST
|
132 |
+
crs3_list = [i[-3:] for i in crs3_option]
|
133 |
+
|
134 |
+
st.write(crs3_list)
|
135 |
+
|
136 |
+
result_df = filter_projects(projects_df, crs3_list)
|
137 |
+
st.dataframe(result_df)
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
"""
|
142 |
+
#semantic_search.show_search(model, faiss_index, sentences)
|
143 |
+
|
144 |
+
df_subset = projects_df.head(10)
|
145 |
+
selected_index = st.selectbox('Select an entry', df_subset.index, format_func=lambda x: df_subset.loc[x, 'iati_id'])
|
146 |
+
|
147 |
+
st.write(selected_index)
|
148 |
+
|
149 |
+
# add index and similarity together
|
150 |
+
indecies = range(0, len(sim_matrix))
|
151 |
+
similarities = sim_matrix[selected_index]
|
152 |
+
zipped_sims = list(zip(indecies, similarities))
|
153 |
+
|
154 |
+
# remove all 0 similarities
|
155 |
+
filtered_sims = [(index, similarity) for index, similarity in zipped_sims if similarity != 0]
|
156 |
+
|
157 |
+
# Select and sort top 20 most similar projects
|
158 |
+
sorted_sims = sorted(filtered_sims, key=lambda x: x[1], reverse=True)
|
159 |
+
top_20_sims = sorted_sims[:20]
|
160 |
+
|
161 |
+
# create result data frame
|
162 |
+
index_list = [tup[0] for tup in top_20_sims]
|
163 |
+
print(index_list)
|
164 |
+
result_df = projects_df.iloc[index_list]
|
165 |
+
print(len(result_df))
|
166 |
+
|
167 |
+
print(len(result_df))
|
168 |
+
# add other colums to result df
|
169 |
+
|
170 |
+
similarity_list = [tup[1] for tup in top_20_sims]
|
171 |
+
result_df["similarity"] = similarity_list
|
172 |
+
|
173 |
+
similarity_table.show_table(result_df, similarity_list)
|
174 |
+
|
175 |
+
"""
|