File size: 22,950 Bytes
c83f30f
 
 
 
 
 
 
 
 
dee1f90
bc71919
58a3049
c83f30f
 
 
 
b068206
58a3049
2fdd7a3
58a3049
ea98bff
654dbf3
c83f30f
22d5249
c83f30f
 
c88b855
 
 
 
 
22d5249
 
1c586ef
26c9862
1c586ef
 
9e4706a
36c612e
269adcf
a49b43b
 
 
 
 
 
 
 
 
 
 
 
f1389fc
a49b43b
 
 
f1389fc
a49b43b
 
 
 
f1389fc
a49b43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c397de
05dce6d
 
 
 
 
 
 
 
5be75f1
6c397de
 
 
 
 
 
 
 
3829a5f
 
6c397de
 
26c9862
3829a5f
5be75f1
1ae8098
26c9862
269adcf
3829a5f
ea98bff
 
1ae8098
ea98bff
1ae8098
 
211bfa3
1ae8098
ea98bff
 
 
 
 
 
 
1ae8098
ea98bff
1ae8098
ea98bff
 
 
 
 
 
 
 
 
bcd119c
 
 
 
b068206
bcd119c
 
0103587
ba9c9b0
 
bcd119c
 
fd70dcf
2b7be76
bcd119c
 
ba9c9b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331d7cb
 
 
620ccce
ba9c9b0
331d7cb
63e07ab
 
ba9c9b0
 
 
58a3049
488567e
 
 
63e07ab
58a3049
488567e
 
 
 
 
 
 
 
 
 
 
 
3829a5f
488567e
8c51a88
83a6fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fa507
702b856
93fa507
83a6fef
9ce164b
83a6fef
9ce164b
83a6fef
 
 
 
 
93fa507
83a6fef
 
 
 
 
9ce164b
 
702b856
93fa507
 
 
 
9ce164b
9799da0
93fa507
 
650683f
9799da0
c9fc9f7
 
 
 
 
 
 
9799da0
c9fc9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
fe15861
c9fc9f7
650683f
fe15861
c9fc9f7
 
 
 
 
dee1f90
c9fc9f7
 
f059070
c9fc9f7
93fa507
9ce164b
93fa507
9ce164b
93fa507
9ce164b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fa507
9ce164b
 
79bc4e9
 
 
 
 
 
 
 
 
93fa507
 
702b856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf8ca1
 
22d5249
6c397de
0dbb0cd
7232d29
05dce6d
e292b3f
5be75f1
7232d29
0dbb0cd
 
 
5be75f1
0dbb0cd
 
e292b3f
28cb3ca
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import gradio as gr
import pandas as pd
import numpy as np
import os
import time
import re
import json
from auditqa.sample_questions import QUESTIONS
from auditqa.engine.prompts import audience_prompts
from auditqa.reports import files, report_list
from auditqa.doc_process import process_pdf, get_local_qdrant
from langchain.schema import (
    HumanMessage,
    SystemMessage,
)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_community.llms import HuggingFaceEndpoint
from auditqa.process_chunks import load_chunks
from langchain_community.chat_models.huggingface import ChatHuggingFace
from qdrant_client.http import models as rest
#from qdrant_client import QdrantClient
from dotenv import load_dotenv
import pkg_resources
load_dotenv()
HF_token = os.environ["HF_TOKEN"]
#installed_packages = pkg_resources.working_set
#package_list_ = ""
#for package in installed_packages:
#    package_list_ = package_list_ + f"{package.key}=={package.version}\n"
#print(package_list_)


######## Vector Store #######
# process all files and get the vectorstores collections
# vectorestore colection are stored on persistent storage so this needs to be run only once
# hence, comment out line below when creating for first time
vectorstores = load_chunks()
# once the vectore embeddings  are created we will qdrant client to access these
#vectorstores = get_local_qdrant()

# -------------------------------------------------------------
# Functions
# -------------------------------------------------------------
def make_html_source(source,i):
    """
    takes the text and converts it into html format for display in "source" side tab
    """
    meta = source.metadata
    # content = source.page_content.split(":",1)[1].strip()
    content = source.page_content.strip()

    name = meta['filename']
    card = f"""
        <div class="card" id="doc{i}">
            <div class="card-content">
                <h2>Doc {i} - {meta['filename']} - Page {int(meta['page'])}</h2>
                <p>{content}</p>
            </div>
            <div class="card-footer">
                <span>{name}</span>
                <a href="{meta['filename']}#page={int(meta['page'])}" target="_blank" class="pdf-link">
                    <span role="img" aria-label="Open PDF">🔗</span>
                </a>
            </div>
        </div>
        """

    return card

def parse_output_llm_with_sources(output):
    # Split the content into a list of text and "[Doc X]" references
    content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
    parts = []
    for part in content_parts:
        if part.startswith("Doc"):
            subparts = part.split(",")
            subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
            subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>""" for subpart in subparts]
            parts.append("".join(subparts))
        else:
            parts.append(part)
    content_parts = "".join(parts)
    return content_parts

def start_chat(query,history):
    history = history + [(query,None)]
    history = [tuple(x) for x in history]
    return (gr.update(interactive = False),gr.update(selected=1),history)

def finish_chat():
    return (gr.update(interactive = True,value = ""))
    
async def chat(query,history,sources,reports,subtype,year):
    """taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
    (messages in gradio format, messages in langchain format, source documents)"""

    print(f">> NEW QUESTION : {query}")
    print(f"history:{history}")
    #print(f"audience:{audience}")
    print(f"sources:{sources}")
    print(f"reports:{reports}")
    print(f"subtype:{subtype}")
    print(f"year:{year}")
    docs_html = ""
    output_query = ""

    ##------------------------decide which collection to fetch------------------------------
    if len(reports) == 0:
        vectorstore = vectorstores["allreports"]
    else:
        vectorstore = vectorstores["allreports"]

    ###-------------------------------------Construct Filter------------------------------------
    if len(reports) == 0:
        print("defining filter for:",sources,":",subtype,":",year)
        filter=rest.Filter(
                must=[rest.FieldCondition(
                        key="metadata.source",
                        match=rest.MatchValue(value=sources)
                    ),
                    rest.FieldCondition(
                        key="metadata.subtype",
                        match=rest.MatchValue(value=subtype)
                    ),
                    rest.FieldCondition(
                        key="metadata.year",
                        match=rest.MatchAny(any=year)
                    ),])
    else:
        print("defining filter for allreports:",reports)
        filter=rest.Filter(
                must=[
                    rest.FieldCondition(
                        key="metadata.filename",
                        match=rest.MatchAny(any=reports)
                    )])
        

    ##------------------------------get context----------------------------------------------------  
    context_retrieved_lst = []
    question_lst= [query]
    for question in question_lst:
        retriever = vectorstore.as_retriever(
          search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.6, "k": 3, "filter":filter})
        
        context_retrieved = retriever.invoke(question)
        print(len(context_retrieved))
        for doc in context_retrieved:
            print(doc.metadata)
    
        def format_docs(docs):
            return "\n\n".join(doc.page_content for doc in docs)
    
        context_retrieved_formatted = format_docs(context_retrieved)
        context_retrieved_lst.append(context_retrieved_formatted)

    ##-------------------Prompt---------------------------------------------------------------
    SYSTEM_PROMPT = """
        You are AuditQ&A, an AI Assistant created by Auditors and Data Scientist. You are given a question and extracted passages of the consolidated/departmental/thematic focus audit reports. Provide a clear and structured answer based on the passages/context provided and the guidelines.
        Guidelines:
        - If the passages have useful facts or numbers, use them in your answer.
        - When you use information from a passage, mention where it came from by using [Doc i] at the end of the sentence. i stands for the number of the document.
        - Do not use the sentence 'Doc i says ...' to say where information came from.
        - If the same thing is said in more than one document, you can mention all of them like this: [Doc i, Doc j, Doc k]
        - Do not just summarize each passage one by one. Group your summaries to highlight the key parts in the explanation.
        - If it makes sense, use bullet points and lists to make your answers easier to understand.
        - You do not need to use every passage. Only use the ones that help answer the question.
        - If the documents do not have the information needed to answer the question, just say you do not have enough information.
        """
    
    USER_PROMPT = """Passages:
        {context}
        -----------------------
        Question: {question}  - Explained to audit expert
        Answer in english with the passages citations:
        """.format(context = context_retrieved_lst, question=query)

    messages = [
    SystemMessage(content=SYSTEM_PROMPT),
    HumanMessage(
        content=USER_PROMPT
    ),]

    ###-----------------getting inference endpoints------------------------------

    # llama-3_1 endpoint = https://howaqfw0lpap12sg.us-east-1.aws.endpoints.huggingface.cloud
    # llama-3 endpoint = https://nhe9phsr2zhs0e36.eu-west-1.aws.endpoints.huggingface.cloud
    #callbacks = [StreamingStdOutCallbackHandler()]
    llm_qa = HuggingFaceEndpoint(
        endpoint_url="https://howaqfw0lpap12sg.us-east-1.aws.endpoints.huggingface.cloud",
        max_new_tokens=1024,
        huggingfacehub_api_token=HF_token,)

    # create rag chain
    chat_model = ChatHuggingFace(llm=llm_qa)
    
    ###-------------------------- get answers ---------------------------------------
    answer_lst = []
    for question, context in zip(question_lst , context_retrieved_lst):
        answer = chat_model.invoke(messages)
        answer_lst.append(answer.content)
    docs_html = []
    for i, d in enumerate(context_retrieved, 1):
        docs_html.append(make_html_source(d, i))
    docs_html = "".join(docs_html)

    previous_answer = history[-1][1]
    previous_answer = previous_answer if previous_answer is not None else ""
    answer_yet = previous_answer + answer_lst[0]
    answer_yet = parse_output_llm_with_sources(answer_yet)
    history[-1] = (query,answer_yet)
    
    history = [tuple(x) for x in history]
        
    yield history,docs_html
#process_pdf()


# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------

# Set up Gradio Theme
theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="red",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
    text_size = gr.themes.utils.sizes.text_sm,
)

init_prompt =  """
Hello, I am Audit Q&A, a conversational assistant designed to help you understand audit Reports. I will answer your questions by using **Audit reports publishsed by Auditor General Office**.
💡 How to use (tabs on right)
- **Reports**: You can choose to address your question to either specific report or a collection of report like District or Ministry focused reports. \
If you dont select any then the Consolidated report is relied upon to answer your question.
- **Examples**: We have curated some example questions,select a particular question from category of questions.
- **Sources**: This tab will display the relied upon paragraphs from the report, to help you in assessing or fact checking if the answer provided by Audit Q&A assitant is correct or not.
⚠️ For limitations of the tool please check **Disclaimer** tab.
"""


with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-component") as demo:
    #----------------------------------------------------------------------------------------------
    # main tab where chat interaction happens
    # ---------------------------------------------------------------------------------------------
    with gr.Tab("AuditQ&A"):
        
        with gr.Row(elem_id="chatbot-row"):
            # chatbot output screen
            with gr.Column(scale=2):
                chatbot = gr.Chatbot(
                    value=[(None,init_prompt)],
                    show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",
                    avatar_images = (None,"data-collection.png"),
                )
                



                with gr.Row(elem_id = "input-message"):
                    textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,
                                       lines = 1,interactive = True,elem_id="input-textbox")

            # second column with playground area for user to select values
            with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
                # creating tabs on right panel
                with gr.Tabs() as tabs:
                    ################## tab for REPORTS SELECTION ##########
                    
                    with gr.Tab("Reports",elem_id = "tab-config",id = 2):
                        gr.Markdown("Reminder: To get better results select the specific report/reports")

                        
                        #### First level filter for selecting Report source/category
                        dropdown_sources = gr.Radio(
                            ["Consolidated", "District","Ministry"],
                            label="Select Report Category",
                            value="Consolidated",
                            interactive=True,
                        )

                        #### second level filter for selecting subtype within the report category selected above
                        dropdown_category = gr.Dropdown(
                            list(files["Consolidated"].keys()),
                            value = list(files["Consolidated"].keys())[0],
                            label = "Filter for Sub-Type",
                            interactive=True)

                        #### update the secodn level filter abse don values from first level
                        def rs_change(rs):
                            return gr.update(choices=files[rs], value=list(files[rs].keys())[0])
                        dropdown_sources.change(fn=rs_change, inputs=[dropdown_sources], outputs=[dropdown_category])

                        #### Select the years for reports
                        dropdown_year = gr.Dropdown(
                            ['2018','2019','2020','2021','2022'],
                            label="Filter for year",
                            multiselect=True,
                            value=['2022'],
                            interactive=True,
                        )
                        gr.Markdown("-------------------------------------------------------------------------")
                        ##### Another way to select reports across category and sub-type
                        dropdown_reports = gr.Dropdown(
                        report_list,
                        label="Or select specific reports",
                        multiselect=True,
                        value=[],
                        interactive=True,)

                    ############### tab for Question selection ###############
                    with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
                        examples_hidden = gr.Textbox(visible = False)

                        # getting defualt key value to display
                        first_key = list(QUESTIONS.keys())[0]
                        # create the question category dropdown
                        dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,
                                                       interactive = True,show_label = True,
                                                       label = "Select a category of sample questions",
                                                       elem_id = "dropdown-samples")
                        
                        
                        # iterate through the questions list
                        samples = []
                        for i,key in enumerate(QUESTIONS.keys()):
                            examples_visible = True if i == 0 else False
                            with gr.Row(visible = examples_visible) as group_examples:
                                examples_questions = gr.Examples(
                                    QUESTIONS[key],
                                    [examples_hidden],
                                    examples_per_page=8,
                                    run_on_click=False,
                                    elem_id=f"examples{i}",
                                    api_name=f"examples{i}",
                                    # label = "Click on the example question or enter your own",
                                    # cache_examples=True,
                                )
                            
                            samples.append(group_examples)
                    ########## tab for Sources reporting #################
                    with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
                        sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
                        docs_textbox = gr.State("")

    def change_sample_questions(key):
        # update the questions list based on key selected
        index = list(QUESTIONS.keys()).index(key)
        visible_bools = [False] * len(samples)
        visible_bools[index] = True
        return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]

    dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
                        

    # static tab 'about us'
    with gr.Tab("About",elem_classes = "max-height other-tabs"):
        with gr.Row():
            with gr.Column(scale=1):
                    gr.Markdown("""The <ins>[**Office of the Auditor General (OAG)**](https://www.oag.go.ug/welcome)</ins> in Uganda, \
                consistent with the mandate of Supreme Audit Institutions (SAIs),\
                remains integral in ensuring transparency and fiscal responsibility.\
                Regularly, the OAG submits comprehensive audit reports to Parliament, \
                which serve as instrumental references for both policymakers and the public, \
                facilitating informed decisions regarding public expenditure. 
                
                However, the prevalent underutilization of these audit reports, \
                leading to numerous unimplemented recommendations, has posed significant challenges\
                to the effectiveness and impact of the OAG's operations. The audit reports made available \
                to the public have not been effectively used by them and other relevant stakeholders. \
                The current format of the audit reports is considered a challenge to the \
                stakeholders' accessibility and usability. This in one way constrains transparency \
                and accountability in the utilization of public funds and effective service delivery. 
                
                In the face of this, modern advancements in Artificial Intelligence (AI),\
                particularly Retrieval Augmented Generation (RAG) technology, \
                emerge as a promising solution. By harnessing the capabilities of such AI tools, \
                there is an opportunity not only to improve the accessibility and understanding \
                of these audit reports but also to ensure that their insights are effectively \
                translated into actionable outcomes, thereby reinforcing public transparency \
                and service delivery in Uganda. 
                
                To address these issues, the OAG has initiated several projects, \
                such as the Audit Recommendation Tracking (ART) System and the Citizens Feedback Platform (CFP). \
                These systems are designed to increase the transparency and relevance of audit activities. \
                However, despite these efforts, engagement and awareness of the audit findings remain low, \
                and the complexity of the information often hinders effective public utilization. Recognizing the need for further\
                enhancement in how audit reports are processed and understood, \
                the **Civil Society and Budget Advocacy Group (CSBAG)** in partnership with the **GIZ**, \
                has recognizing the need for further enhancement in how audit reports are processed and understood.   
                
                This prototype tool leveraging AI (Artificial Intelligence) aims at offering critical capabilities such as '
                summarizing complex texts, extracting thematic insights, and enabling interactive, \
                user-friendly analysis through a chatbot interface. By making the audit reports more accessible,\
                this aims to increase readership and utilization among stakeholders, \
                which can lead to better accountability and improve service delivery
                
                """)


    # static tab for disclaimer
    with gr.Tab("Disclaimer",elem_classes = "max-height other-tabs"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("""
                - This chatbot is intended for specific use of answering the questions based on audit reports published by OAG, for any use beyond this scope we have no liability to response provided by chatbot.
                - We do not guarantee the accuracy, reliability, or completeness of any information provided by the chatbot and disclaim any liability or responsibility for actions taken based on its responses.
                - The chatbot may occasionally provide inaccurate or inappropriate responses, and it is important to exercise judgment and critical thinking when interpreting its output.
                - The chatbot responses should not be considered professional or authoritative advice and are generated based on patterns in the data it has been trained on.
                - The chatbot's responses do not reflect the opinions or policies of our organization or its affiliates.
                - Any personal or sensitive information shared with the chatbot is at the user's own risk, and we cannot guarantee complete privacy or confidentiality.
                - the chatbot is not deterministic, so there might be change in answer to same question when asked by different users or multiple times.
                - By using this chatbot, you agree to these terms and acknowledge that you are solely responsible for any reliance on or actions taken based on its responses.
                - **This is just a prototype and being tested and worked upon, so its not perfect and may sometimes give irrelevant answers**. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.
                """)
            
                
                

    # using event listeners for 1. query box 2. click on example question
    # https://www.gradio.app/docs/gradio/textbox#event-listeners-arguments
    (textbox
     .submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
     .then(chat, [textbox,chatbot, dropdown_sources,dropdown_reports,dropdown_category,dropdown_year], [chatbot,sources_textbox],concurrency_limit = 8,api_name = "chat_textbox")
     .then(finish_chat, None, [textbox],api_name = "finish_chat_textbox"))

    (examples_hidden
        .change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
        .then(chat, [examples_hidden,chatbot, dropdown_sources,dropdown_reports,dropdown_category,dropdown_year], [chatbot,sources_textbox],concurrency_limit = 8,api_name = "chat_examples")
        .then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
    )
    
    demo.queue()

demo.launch()