PandaGPT / model /openllama.py
GMFTBY's picture
Update model/openllama.py
89690cf
raw
history blame
14.2 kB
from header import *
import os
import torch.nn.functional as F
from .ImageBind import *
from .ImageBind import data
from .modeling_llama import LlamaForCausalLM
from transformers import StoppingCriteria, StoppingCriteriaList
import torch
from torch.nn.utils import rnn
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops = [], encounters=1):
super().__init__()
self.stops = stops
self.ENCOUNTERS = encounters
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
stop_count = 0
for stop in self.stops:
stop_count = (stop == input_ids[0]).sum().item()
if stop_count >= self.ENCOUNTERS:
return True
return False
def build_one_instance(tokenizer, conversation):
text_list = []
turn_num = len(conversation)
input_ids, target_ids = [], []
for i in range(turn_num):
turn = conversation[i]
role = turn['from']
if i == 0: # the first human turn
assert role == 'human'
text = '</Img> ' + turn['value'] + '\n### Assistant:'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100]*len(one_input_id) # do not perform loss regression on human prompt
else:
if role == 'human':
text = 'Human: ' + turn['value'] + '\n### Assistant:'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100]*len(one_input_id)
elif role == 'gpt':
text = turn['value'] + '\n###'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
else:
raise Exception('Wrong Role!!!')
text_list.append(text)
assert len(input_ids) == len(target_ids)
return text_list, input_ids, target_ids
def process_batch_instance(tokenizer, batch_of_conversations, max_tgt_len):
batch_input_ids, batch_target_ids = [], []
for conversation in batch_of_conversations:
_, one_input_ids, one_target_ids = build_one_instance(tokenizer, conversation)
batch_input_ids.append(torch.LongTensor(one_input_ids))
batch_target_ids.append(torch.LongTensor(one_target_ids))
input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
assert input_ids.size() == target_ids.size()
input_ids = input_ids[:,:max_tgt_len]
target_ids = target_ids[:,:max_tgt_len]
attention_mask = input_ids.ne(tokenizer.pad_token_id)
assert attention_mask.size() == input_ids.size()
return input_ids, target_ids, attention_mask.long()
PROMPT_START = '### Human: <Img>'
class OpenLLAMAPEFTModel(nn.Module):
'''LoRA for LLaMa model'''
def __init__(self, **args):
super(OpenLLAMAPEFTModel, self).__init__()
self.args = args
imagebind_ckpt_path = args['imagebind_ckpt_path']
vicuna_ckpt_path = args['vicuna_ckpt_path']
max_tgt_len = args['max_tgt_len']
stage = args['stage']
print (f'Initializing visual encoder from {imagebind_ckpt_path} ...')
self.visual_encoder, self.visual_hidden_size = \
imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path)
# free vision encoder
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder.eval()
print ('Visual encoder initialized.')
print (f'Initializing language decoder from {vicuna_ckpt_path} ...')
# add the lora module
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=self.args['lora_r'],
lora_alpha=self.args['lora_alpha'],
lora_dropout=self.args['lora_dropout'],
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj']
)
self.llama_model = LlamaForCausalLM.from_pretrained(vicuna_ckpt_path, use_auth_token=os.environ['API_TOKEN'])
self.llama_model = get_peft_model(self.llama_model, peft_config)
self.llama_model.print_trainable_parameters()
self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_ckpt_path, use_fast=False, use_auth_token=os.environ['API_TOKEN'])
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_tokenizer.padding_side = "right"
print ('Language decoder initialized.')
self.llama_proj = nn.Linear(
self.visual_hidden_size, self.llama_model.config.hidden_size
)
self.max_tgt_len = max_tgt_len
self.device = torch.cuda.current_device() if torch.cuda.is_available() else torch.device('cpu')
def encode_video(self, video_paths):
inputs = {ModalityType.VISION: data.load_and_transform_video_data(video_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
video_embeds = embeddings[ModalityType.VISION] # bsz x 1024
inputs_llama = self.llama_proj(video_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_audio(self, audio_paths):
inputs = {ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
audio_embeds = embeddings[ModalityType.AUDIO] # bsz x 1024
inputs_llama = self.llama_proj(audio_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_thermal(self, thermal_paths):
inputs = {ModalityType.THERMAL: data.load_and_transform_thermal_data(thermal_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['thermal'] # bsz x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_image(self, image_paths):
inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['vision'] # bsz x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds, input_ids, target_ids, attention_mask):
'''
input_ids, target_ids, attention_mask: bsz x s2
'''
input_ids = input_ids.to(self.device) # bsz x s2
target_ids = target_ids.to(self.device) # bsz x s2
attention_mask = attention_mask.to(self.device) # bsz x s2
batch_size = img_embeds.shape[0]
p_before = PROMPT_START
p_before_tokens = self.llama_tokenizer(p_before,
return_tensors="pt", add_special_tokens=False).to(self.device)
# peft model need deeper call
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.model.embed_tokens(input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim
bos = torch.ones([batch_size, 1],
dtype=p_before_tokens.input_ids.dtype,
device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
# create targets
empty_targets = (
torch.ones([batch_size, 1+p_before_embeds.size()[1]+1], # 1 (bos) + s1 + 1 (image vector)
dtype=torch.long).to(self.device).fill_(-100)
) # bsz x (1 + s1 + 1)
targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + 1 + s2)
assert inputs_embeds.size()[1] == targets.size()[1]
atts_prefix = torch.ones([batch_size, 1+p_before_embeds.size()[1]+1], dtype=torch.long).to(self.device) # bsz x (1 + s1 +1)
attention_mask = torch.cat([atts_prefix, attention_mask], dim=1)
assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2)
return inputs_embeds, targets, attention_mask
def forward(self, inputs):
image_paths = inputs['image_paths']
img_embeds, _ = self.encode_image(image_paths)
output_texts = inputs['output_texts']
input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len)
inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
# calculate the token accuarcy
chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1] # [B, S-1]
labels = targets[:, 2:]
gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S]
valid_mask = (labels != -100).reshape(-1)
valid_tokens = gen_acc & valid_mask # [B*S]
gen_acc = valid_tokens.sum().item() / valid_mask.sum().item()
return loss, gen_acc
def extract_multimodal_feature(self, inputs):
features = []
if inputs['image_paths']:
image_embeds, _ = self.encode_image(inputs['image_paths'])
features.append(image_embeds)
if inputs['audio_paths']:
audio_embeds, _ = self.encode_audio(inputs['audio_paths'])
features.append(audio_embeds)
if inputs['video_paths']:
video_embeds, _ = self.encode_video(inputs['video_paths'])
features.append(video_embeds)
if inputs['thermal_paths']:
thermal_embeds, _ = self.encode_thermal(inputs['thermal_paths'])
features.append(thermal_embeds)
feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0)
return feature_embeds
def prepare_generation_embedding(self, inputs):
prompt = inputs['prompt']
if len(inputs['modality_embeds']) == 1:
feature_embeds = inputs['modality_embeds'][0]
else:
feature_embeds = self.extract_multimodal_feature(inputs)
inputs['modality_embeds'].append(feature_embeds)
batch_size = feature_embeds.shape[0]
p_before = PROMPT_START
p_before_tokens = self.llama_tokenizer(p_before,
return_tensors="pt", add_special_tokens=False).to(self.device)
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
text = '</Img> ' + prompt + '\n### Assistant:'
p_after_tokens = self.llama_tokenizer(text, add_special_tokens=False, return_tensors='pt').to(self.device)
p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
bos = torch.ones([batch_size, 1],
dtype=p_before_tokens.input_ids.dtype,
device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, feature_embeds, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
return inputs_embeds
def generate(self, inputs):
'''
inputs = {
'image_paths': optional,
'audio_paths': optional
'video_paths': optional
'thermal_paths': optional
'mode': generation mode,
'prompt': human input prompt,
'max_tgt_len': generation length,
'top_p': top_p,
'temperature': temperature
'modality_embeds': None or torch.tensor
'modality_cache': save the image cache
}
'''
input_embeds = self.prepare_generation_embedding(inputs)
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=[2277], encounters=1)])
outputs = self.llama_model.generate(
inputs_embeds=input_embeds,
max_new_tokens=inputs['max_tgt_len'],
top_p=inputs['top_p'],
temperature=inputs['temperature'],
do_sample=True,
use_cache=True,
stopping_criteria=stopping_criteria,
)
output_text = self.llama_tokenizer.decode(outputs[0][:-2], skip_special_tokens=True)
return output_text