from header import * class DeepSpeedAgent: def __init__(self, model, args): super(DeepSpeedAgent, self).__init__() self.args = args self.model = model if args['stage'] == 2: self.load_stage_1_parameters(args["delta_ckpt_path"]) print(f'[!] load stage 1 checkpoint from {args["delta_ckpt_path"]}') # load config parameters of deepspeed ds_params = json.load(open(self.args['ds_config_path'])) ds_params['scheduler']['params']['total_num_steps'] = self.args['total_steps'] ds_params['scheduler']['params']['warmup_num_steps'] = max(10, int(self.args['total_steps'] * self.args['warmup_rate'])) self.ds_engine, self.optimizer, _ , _ = deepspeed.initialize( model=self.model, model_parameters=self.model.parameters(), config_params=ds_params, dist_init_required=True, args=types.SimpleNamespace(**args) ) @torch.no_grad() def predict(self, batch): self.model.eval() string = self.model.generate_one_sample(batch) return string def train_model(self, batch, current_step=0, pbar=None): self.ds_engine.module.train() loss, mle_acc = self.ds_engine(batch) self.ds_engine.backward(loss) self.ds_engine.step() pbar.set_description(f'[!] loss: {round(loss.item(), 4)}; token_acc: {round(mle_acc*100, 2)}') pbar.update(1) if self.args['local_rank'] == 0 and self.args['log_path'] and current_step % self.args['logging_step'] == 0: elapsed = pbar.format_dict['elapsed'] rate = pbar.format_dict['rate'] remaining = (pbar.total - pbar.n) / rate if rate and pbar.total else 0 remaining = str(datetime.timedelta(seconds=remaining)) logging.info(f'[!] progress: {round(pbar.n/pbar.total, 5)}; remaining time: {remaining}; loss: {round(loss.item(), 4)}; token_acc: {round(mle_acc*100, 2)}') mle_acc *= 100 return mle_acc def save_model(self, path, current_step): # only save trainable model parameters param_grad_dic = { k: v.requires_grad for (k, v) in self.ds_engine.module.named_parameters() } state_dict = self.ds_engine.module.state_dict() checkpoint = OrderedDict() for k, v in self.ds_engine.module.named_parameters(): if v.requires_grad: checkpoint[k] = v torch.save(checkpoint, f'{path}/pytorch_model.pt') # save tokenizer self.model.llama_tokenizer.save_pretrained(path) # save configuration self.model.llama_model.config.save_pretrained(path) print(f'[!] save model into {path}') def load_stage_1_parameters(self, path): delta_ckpt = torch.load(path, map_location=torch.device('cpu')) self.model.load_state_dict(delta_ckpt, strict=False)