Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- .gitattributes +2 -0
- dehazing_gen.py +86 -0
- genC.pth.tar +3 -0
- gradio_check1.png +3 -0
- gradio_check10.png +0 -0
- gradio_check13.png +3 -0
- gradio_check5.png +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
gradio_check1.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
gradio_check13.png filter=lfs diff=lfs merge=lfs -text
|
dehazing_gen.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class ConvBlock(nn.Module):
|
6 |
+
def __init__(self, in_channels: int, out_channels: int, downsample: bool = True, use_act: bool = True,
|
7 |
+
use_dropout: bool = False, **kwargs):
|
8 |
+
super(ConvBlock, self).__init__()
|
9 |
+
|
10 |
+
self.conv_block = nn.Sequential(
|
11 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, padding_mode="reflect", **kwargs)
|
12 |
+
|
13 |
+
if downsample
|
14 |
+
else nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, **kwargs),
|
15 |
+
|
16 |
+
nn.InstanceNorm2d(num_features=out_channels),
|
17 |
+
nn.ReLU(inplace=True) if use_act else nn.Identity()
|
18 |
+
)
|
19 |
+
if use_dropout:
|
20 |
+
self.conv_block = nn.Sequential(self.conv_block, nn.Dropout(p=0.5))
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
return self.conv_block(x)
|
24 |
+
|
25 |
+
|
26 |
+
class ResidualBlock(nn.Module):
|
27 |
+
def __init__(self, features: int):
|
28 |
+
super(ResidualBlock, self).__init__()
|
29 |
+
self.residual_block = nn.Sequential(
|
30 |
+
ConvBlock(in_channels=features, out_channels=features, kernel_size=3, padding=1),
|
31 |
+
ConvBlock(in_channels=features, out_channels=features, kernel_size=3, padding=1, use_act=False),
|
32 |
+
)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
return x + self.residual_block(x)
|
36 |
+
|
37 |
+
|
38 |
+
class CycleGenerator(nn.Module):
|
39 |
+
def __init__(self, img_channels: int = 3, latent_dim: int = 64, num_residuals: int = 9):
|
40 |
+
super(CycleGenerator, self).__init__()
|
41 |
+
|
42 |
+
self.base = nn.Sequential(
|
43 |
+
nn.Conv2d(in_channels=img_channels, out_channels=latent_dim, kernel_size=7, stride=1, padding=3,
|
44 |
+
padding_mode="reflect"),
|
45 |
+
nn.ReLU(inplace=True)
|
46 |
+
)
|
47 |
+
|
48 |
+
self.down_blocks = nn.ModuleList(
|
49 |
+
[
|
50 |
+
ConvBlock(in_channels=latent_dim, out_channels=latent_dim * 2, kernel_size=3, stride=2, padding=1),
|
51 |
+
ConvBlock(in_channels=latent_dim * 2, out_channels=latent_dim * 4, kernel_size=3, stride=2, padding=1),
|
52 |
+
]
|
53 |
+
)
|
54 |
+
|
55 |
+
self.residual_blocks = nn.Sequential(
|
56 |
+
*[ResidualBlock(features=latent_dim * 4) for _ in range(num_residuals)]
|
57 |
+
)
|
58 |
+
|
59 |
+
self.up_blocks = nn.ModuleList(
|
60 |
+
[
|
61 |
+
ConvBlock(in_channels=latent_dim * 4, out_channels=latent_dim * 2, kernel_size=3, stride=2, padding=1,
|
62 |
+
output_padding=1,
|
63 |
+
downsample=False),
|
64 |
+
ConvBlock(in_channels=latent_dim * 2, out_channels=latent_dim, kernel_size=3, stride=2, padding=1,
|
65 |
+
output_padding=1,
|
66 |
+
downsample=False),
|
67 |
+
]
|
68 |
+
)
|
69 |
+
|
70 |
+
self.head = nn.Conv2d(in_channels=latent_dim, out_channels=img_channels, kernel_size=7, stride=1, padding=3,
|
71 |
+
padding_mode="reflect")
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x = self.base(x)
|
75 |
+
|
76 |
+
for layer in self.down_blocks:
|
77 |
+
x = layer(x)
|
78 |
+
|
79 |
+
x = self.residual_blocks(x)
|
80 |
+
|
81 |
+
for layer in self.up_blocks:
|
82 |
+
x = layer(x)
|
83 |
+
|
84 |
+
x = self.head(x)
|
85 |
+
|
86 |
+
return torch.tanh(x)
|
genC.pth.tar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83c998de8c48e350a93fd204db7bf56739b7fd1e068a8bc73e80baf326c3ea30
|
3 |
+
size 156833914
|
gradio_check1.png
ADDED
Git LFS Details
|
gradio_check10.png
ADDED
gradio_check13.png
ADDED
Git LFS Details
|
gradio_check5.png
ADDED