File size: 15,321 Bytes
025a1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import pandas as pd
import numpy as np
import streamlit as st
from sklearn.impute import KNNImputer,SimpleImputer,IterativeImputer
import best_tts, evaluationer,models
from sklearn.experimental import enable_iterative_imputer
from sklearn.model_selection import train_test_split as tts
from collections import Counter
#root_mean_squared_error
from sklearn.metrics import root_mean_squared_error
import seaborn as sns
import matplotlib.pyplot as plt
import outliers,best_tts
import feature_selections
def Auto_optimizer(X,y,eva,model,test= None):
    evaluationer.reg_evaluation_df.drop(index =evaluationer.reg_evaluation_df.index)
    num_cols = X.select_dtypes(exclude = "O").columns
    cat_cols = X.select_dtypes(include = "O").columns
    st.write("Num_cols",tuple(num_cols))
    st.write("cat_cols",tuple(cat_cols))

# check for Duplicate and drop duplicated in X
    
    if len(X.isnull().sum()[(X.isnull().sum()/len(X)*100) >40]) >0:
        X = X.drop(columns = X.isnull().sum()[(X.isnull().sum()/len(X)*100) >40].index)
        st.write("Columns with more than 40% null values removed")
    # st.write("csx",X)

    len_null = X.isnull().sum().sum() 

    st.write(f"There are {len_null} null values in Train")

    knn_imputed_num_X = X.copy()
    si_mean_imputed_num_X = X.copy()
    # st.write("sf",si_mean_imputed_num_X)
    si_median_imputed_num_X = X.copy()
    si_most_frequent_imputed_num_X = X.copy()
    iter_imputed_num_X = X.copy()
    knn_imputed_X_cat_dropped = knn_imputed_num_X.copy()
    si_mean_imputed_X_cat_dropped = si_mean_imputed_num_X.copy()
    si_median_imputed_X_cat_dropped = si_median_imputed_num_X.copy()
    si_most_frequent_imputed_X_cat_dropped = si_most_frequent_imputed_num_X.copy()
    iter_imputed_X_cat_dropped = iter_imputed_num_X.copy()
    if len_null >0:
       
        if X[num_cols].isnull().sum().sum() >0:

            knn_imputer = KNNImputer(n_neighbors = 5) 
            knn_imputed_num_X[num_cols] = knn_imputer.fit_transform(knn_imputed_num_X[num_cols])
            si_imputer = SimpleImputer(strategy = "mean")
            si_mean_imputed_num_X[num_cols] = si_imputer.fit_transform(si_mean_imputed_num_X[num_cols])
            si_imputer = SimpleImputer(strategy = "median")
            si_median_imputed_num_X[num_cols] = si_imputer.fit_transform(si_median_imputed_num_X[num_cols])
            si_imputer = SimpleImputer(strategy = "most_frequent")
            si_most_frequent_imputed_num_X[num_cols] = si_imputer.fit_transform(si_most_frequent_imputed_num_X[num_cols])
            iter_imputer = IterativeImputer(max_iter = 200,random_state= 42)
            iter_imputed_num_X[num_cols] = iter_imputer.fit_transform(iter_imputed_num_X[num_cols])
        knn_imputed_X_cat_dropped = knn_imputed_num_X.copy()
        si_mean_imputed_X_cat_dropped = si_mean_imputed_num_X.copy()
        si_median_imputed_X_cat_dropped = si_median_imputed_num_X.copy()
        si_most_frequent_imputed_X_cat_dropped = si_most_frequent_imputed_num_X.copy()
        iter_imputed_X_cat_dropped = iter_imputed_num_X.copy()

        if X[cat_cols].isnull().sum().sum() >0:
            # treating missing values in categorical columns
            # st.write("si_mean_imputed_num_X",si_mean_imputed_num_X)
            si_imputer = SimpleImputer(strategy = "most_frequent")
            
            knn_imputed_num_X[cat_cols] = si_imputer.fit_transform(knn_imputed_num_X[cat_cols])
            si_imputer = SimpleImputer(strategy = "most_frequent")
            si_mean_imputed_num_X.loc[:,cat_cols] = si_imputer.fit_transform(si_mean_imputed_num_X.loc[:,cat_cols])
            # st.write("si_mean_imputed_num_X",si_mean_imputed_num_X)
            si_median_imputed_num_X[cat_cols] = si_imputer.fit_transform(si_median_imputed_num_X[cat_cols])
            si_most_frequent_imputed_num_X[cat_cols] = si_imputer.fit_transform(si_most_frequent_imputed_num_X[cat_cols])
            iter_imputed_num_X[cat_cols] = si_imputer.fit_transform(iter_imputed_num_X[cat_cols])

            knn_imputed_X_cat_dropped = knn_imputed_X_cat_dropped.dropna()
            si_mean_imputed_X_cat_dropped =si_mean_imputed_X_cat_dropped.dropna()
            si_median_imputed_X_cat_dropped =si_median_imputed_X_cat_dropped.dropna()
            si_most_frequent_imputed_X_cat_dropped =si_most_frequent_imputed_X_cat_dropped.dropna()
            iter_imputed_X_cat_dropped =iter_imputed_X_cat_dropped.dropna()
            st.write("sdds",knn_imputed_num_X)
            st.write("sddssd",knn_imputed_X_cat_dropped)
                                                          
    miss_val_dropped_X = X.dropna()
        
        # list of dataframes
        
    list_X_after_missing_values= [knn_imputed_num_X,
                            si_mean_imputed_num_X,
                            si_median_imputed_num_X,
                            si_most_frequent_imputed_num_X,
                            iter_imputed_num_X,
                            knn_imputed_X_cat_dropped,
                            si_mean_imputed_X_cat_dropped,
                            si_median_imputed_X_cat_dropped,
                            si_most_frequent_imputed_X_cat_dropped,
                            iter_imputed_X_cat_dropped,
                            miss_val_dropped_X]
    list_X_after_missing_values_names= ["knn_imputed_num_X",
                            "si_mean_imputed_num_X",
                            "si_median_imputed_num_X",
                            "si_most_frequent_imputed_num_X",
                            "iter_imputed_num_X",
                            "knn_imputed_X_cat_dropped",
                            "si_mean_imputed_X_cat_dropped",
                            "si_median_imputed_X_cat_dropped",
                            "si_most_frequent_imputed_X_cat_dropped",
                            "iter_imputed_X_cat_dropped",
                            "miss_val_dropped_X"]
    # st.write("si_most_frequent_imputed_num_X",si_most_frequent_imputed_num_X,)   
    ord_enc_cols = []
    ohe_enc_cols = []

    if len(cat_cols) == 0:
        st.write("No Categorical Columns in Train")
    else:
        st.write("Select Columns for Ordinal Encoding")
        for column in cat_cols:
            selected = st.checkbox(column)
            if selected:
                st.write(f"No. of Unique value in {column} column are", X[column].nunique())
                ord_enc_cols.append(column)
    ohe_enc_cols = set(cat_cols) -set(ord_enc_cols)
    ohe_enc_cols = list(ohe_enc_cols)
    
    if len(ord_enc_cols)>0:
                st.write("ordinal encoded columns" ,tuple(ord_enc_cols))
    if len(ohe_enc_cols)>0:
        st.write("one hot encoded columns" ,tuple(ohe_enc_cols))
    
    if len(ord_enc_cols)>0:
        
        ordinal_order_vals = []

        for column in ord_enc_cols:
            unique_vals = X.dropna()[column].unique()
            # st.write(f"No. of Unique value in {column} column are", len(unique_vals))
                            
            ordered_unique_vals = st.multiselect("Select values in order for Ordinal Encoding",unique_vals,unique_vals)
            ordinal_order_vals.append(ordered_unique_vals)
        
        st.write("order of values for Ordinal Encoding",tuple(ordinal_order_vals))  

        if len_null > 0: 

            for df_name, df in enumerate(list_X_after_missing_values):
                # st.write(f"{list_X_after_missing_values_names[df_name]}",df)
                from sklearn.preprocessing import OrdinalEncoder
                ord = OrdinalEncoder(categories=ordinal_order_vals,handle_unknown= "use_encoded_value",unknown_value = -1 )
                df[ord_enc_cols] = ord.fit_transform(df[ord_enc_cols])
                # st.write(f"{list_X_after_missing_values_names[df_name]}",df)
        else :  
            from sklearn.preprocessing import OrdinalEncoder
            ord = OrdinalEncoder(categories=ordinal_order_vals,handle_unknown= "use_encoded_value",unknown_value = -1 )
            X[ord_enc_cols] = ord.fit_transform(X[ord_enc_cols])

        st.write("Ordinal Encoding Completed βœ…")

    if len(ohe_enc_cols)>0:
        if len_null > 0:
            for df_name, df in enumerate(list_X_after_missing_values):
                from sklearn.preprocessing import OneHotEncoder
                ohe = OneHotEncoder(sparse_output = False,handle_unknown = "ignore")
                pd.options.mode.chained_assignment = None
                df.loc[:, ohe.get_feature_names_out()] = ohe.fit_transform(df[ohe_enc_cols])
                df.drop(columns = ohe_enc_cols,inplace = True)
                pd.options.mode.chained_assignment = 'warn'
        else:
            from sklearn.preprocessing import OneHotEncoder
            ohe = OneHotEncoder(sparse_output = False,handle_unknown = "ignore")
            pd.options.mode.chained_assignment = None
            X.loc[:, ohe.get_feature_names_out()] = ohe.fit_transform(X[ohe_enc_cols])
            X.drop(columns = ohe_enc_cols,inplace = True)
            pd.options.mode.chained_assignment = 'warn'
        st.write("OneHot Encoding Completed βœ…")


    if len(ohe_enc_cols)>0:
        if len_null > 0:
            for name,df in enumerate(list_X_after_missing_values):
                X_train,X_test,y_train,y_test = tts(df,y[df.index],test_size =.2 ,random_state = 42)
                #  best_tts.best_tts(df,y,model,eva)
                evaluationer.evaluation(f"{list_X_after_missing_values_names[name]}",X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva)
        else:
            X_train,X_test,y_train,y_test = tts(X,y[X.index],test_size =.2 ,random_state = 42)
            #  best_tts.best_tts(X,y,model,eva)
                
            evaluationer.evaluation(f"baseline_model",X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva)

    if len_null >0:
        for name,df in enumerate(list_X_after_missing_values):
            X_train,X_test,y_train,y_test = tts(df,y[df.index],test_size =.2 ,random_state = 42)
            st.write(f"this is test{list_X_after_missing_values_names[name]}",X_train.isnull().sum().sum())
            evaluationer.evaluation(f"{list_X_after_missing_values_names[name]}",X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva)

    if eva == "class":
        counter = Counter(y)
        total = sum(counter.values())
        balance_ratio = {cls: count / total for cls, count in counter.items()}
        num_classes = len(balance_ratio)
        ideal_ratio = 1 / num_classes
        a = all(abs(ratio - ideal_ratio) <= 0.1 * ideal_ratio for ratio in balance_ratio.values())
        if a == True:
            st.write("Balanced Dataset βœ…")
            st.write("Using accuracy for Evaluation")
            value = "test_acc"
        else:
            st.write("Unbalanced Dataset ❌")
            st.write("Using F1 score for Evaluation")
            value = "test_f1"
        st.write("SFdfs",evaluationer.classification_evaluation_df)
        evaluationer.classification_evaluation_df.sort_values(by = value,inplace= True)
        name = str(evaluationer.classification_evaluation_df.iloc[-1,0])
        st.write("df name",evaluationer.classification_evaluation_df.iloc[-1,0])
        if len_null >0:
            b = list_X_after_missing_values_names.index(name)
            st.write("Sdffsf",b)
            st.write("df",list_X_after_missing_values[b])
            X = list_X_after_missing_values[b]
    if eva == "reg":
        st.write("Using R2 score for Evaluation",evaluationer.reg_evaluation_df)
        value = "test_r2"
        evaluationer.reg_evaluation_df.sort_values(by = value,inplace= True)
        st.write("adfsdf",evaluationer.reg_evaluation_df.iloc[-1,0])
        name = str(evaluationer.reg_evaluation_df.iloc[-1,0])
        st.write("Sdffsf",name)
        if len_null >0:
            b = list_X_after_missing_values_names.index(name)
            st.write("Sdffsf",b)
            st.write("df",list_X_after_missing_values[b])
            X = list_X_after_missing_values[b]
    

    # Create a figure and axes
    num_plots = len(num_cols)
    cols = 2  # Number of columns in the subplot grid
    rows = (num_plots + cols - 1) // cols  # Calculate the number of rows needed

    fig, axes = plt.subplots(rows, cols, figsize=(15, 5 * rows))

    # Flatten the axes array for easy iteration, and remove any excess subplots
    axes = axes.flatten()
    for ax in axes[num_plots:]:
        fig.delaxes(ax)

    for i, col in enumerate(num_cols):
        sns.histplot(X[col], ax=axes[i],kde = True,color=sns.color_palette('Oranges', as_cmap=True)(0.7))
        axes[i].set_title(col)

    # Adjust layout
    plt.tight_layout()

    # Show the plot in Streamlit
    st.pyplot(fig)

    # Create a figure and axes
    num_plots = len(num_cols)
    cols = 3  # Number of columns in the subplot grid
    rows = (num_plots + cols - 1) // cols  # Calculate the number of rows needed

    fig, axes = plt.subplots(rows, cols, figsize=(15, 5 * rows))

    # Flatten the axes array for easy iteration, and remove any excess subplots
    axes = axes.flatten()
    for ax in axes[num_plots:]:
        fig.delaxes(ax)

    for i, col in enumerate(num_cols):
        sns.boxplot(y=X[col], ax=axes[i],palette="magma")
        axes[i].set_title(col)

    # Adjust layout
    plt.tight_layout()

    # Show the plot in Streamlit
    st.pyplot(fig)
     
    outlier_cols = st.multiselect("De-Select columns for Detecting Outliers", num_cols,default= list(num_cols))

    st.write("Checking for Outliers")
    outliers_df_X,outlier_indexes = outliers.detect_outliers(X,list(outlier_cols))
    st.write("Outliers in Dataframe Summary",outliers_df_X)
    st.write("Columns for Outliers handling",tuple(outliers_df_X["columns name"]))

    select_outlier_cols = st.multiselect("Select columns for Outlier Handling",tuple(outliers_df_X["columns name"]),default =tuple(outliers_df_X["columns name"]))
    resultant,outlier_handled_df,outlier_handled_df_name= outliers.outlier_handling(X,y,model,outlier_indexes = outlier_indexes,outlier_cols = select_outlier_cols ,method = root_mean_squared_error,test_size = 0.2, random_state = 42,eva = "reg")
    st.write("outlier handling with methods",resultant)
    st.write("Best method with outlier handling",resultant.sort_values(by = "test_r2").tail(1).iloc[:,0].values[0])
    try :
        st.write("Best X Data Index No.",outlier_handled_df_name.index(resultant.sort_values(by = "test_r2").tail(1).iloc[:,0].values[0]))
    
        st.write("Best X DataFrame after outlier handling ",outlier_handled_df[outlier_handled_df_name.index(resultant.sort_values(by = "test_r2").tail(1).iloc[:,0].values[0])])
        X = outlier_handled_df[outlier_handled_df_name.index(resultant.sort_values(by = "test_r2").tail(1).iloc[:,0].values[0])]
    except :
        "evaluation of baseline model is better continuing with baseline model"
    
    # result_df ,X_train_b,X_test_b,y_train_b,y_test_b = best_tts.best_tts(X,y,model,eva)
    X_train,X_test,y_train,y_test = tts(X,y[X.index],random_state = 42,test_size = 0.2)
    st.write("result_df",X)
    st.write("fsdfs",X_train)
    result_df_1 = feature_selections.feature_selection(X_train,X_test,y_train,y_test,model,alpha = 0.05)
    st.write("sdchsvdgj",result_df_1)