File size: 30,555 Bytes
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# import libraries
import streamlit as st
import joblib
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split as tts
import evaluationer,models, null_value_handling
import auto_optimizer
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import SimpleImputer, IterativeImputer
# st.set_page_config(layout="wide")

st.set_page_config(
    page_title="LazyML App",
    page_icon="🧊",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://www.extremelycoolapp.com/help',
        'Report a bug': "https://www.extremelycoolapp.com/bug",
        'About': "# This is a header. This is an *extremely* cool app!"
    }
)

import streamlit as st

# Title with Rainbow Transition Effect and Neon Glow
html_code = """

<div class="title-container">

  <h1 class="neon-text">

    LazyML

  </h1>

</div>



<style>

@keyframes rainbow-text-animation {

  0% { color: red; }

  16.67% { color: orange; }

  33.33% { color: yellow; }

  50% { color: green; }

  66.67% { color: blue; }

  83.33% { color: indigo; }

  100% { color: violet; }

}



.title-container {

  text-align: center;

  margin: 1em 0;

  padding-bottom: 10px;

  border-bottom: 4  px solid #fcdee9; /* Magenta underline */

}



.neon-text {

  font-family: Arial, sans-serif;

  font-size: 4em;

  margin: 0;

  animation: rainbow-text-animation 5s infinite linear;

  text-shadow: 0 0 5px rgba(255, 255, 255, 0.8),

               0 0 10px rgba(255, 255, 255, 0.7),

               0 0 20px rgba(255, 255, 255, 0.6),

               0 0 40px rgba(255, 0, 255, 0.6),

               0 0 80px rgba(255, 0, 255, 0.6),

               0 0 90px rgba(255, 0, 255, 0.6),

               0 0 100px rgba(255, 0, 255, 0.6),

               0 0 150px rgba(255, 0, 255, 0.6);

}

</style>

"""

st.markdown(html_code, unsafe_allow_html=True)


# file uploader 
csv_upload = st.sidebar.file_uploader("Input CSV File for ML modelling", type=['csv'])
csv_upload2 = st.sidebar.file_uploader("Input CSV File of Test Data Prediction",type = ["csv"])
test = pd.DataFrame()
if csv_upload is not None:
    # read the uploaded file into dataframe
    df = pd.read_csv(csv_upload)

    # saving the dataframe to a CSV file
    df.to_csv('csv_upload.csv', index=False)
    st.write("Train File uploaded successfully. βœ…")

    if csv_upload2 is not None:
        test = pd.read_csv(csv_upload2)
        id_col = st.selectbox("select column for submission i.e, ID",test.columns)
        submission_id = test[id_col]
        # st.write("Train File upl",submission_id)

        


    if len(test) >0:
        # saving the test dataframe to a CSV file
        test.to_csv('csv_upload_test.csv', index=False)
        st.write("Test File uploaded successfully. βœ…")
    
    display_train_data = st.radio("Display Train Data",["Yes","No"],index = 1)
    if  display_train_data == "Yes":
        st.dataframe(df.head())

    if len(test) >0:
        display_test_data = st.radio("Display Test Data",["Yes","No"],index = 1)
        if display_test_data == "Yes":
            st.dataframe(test.head())

    
    if st.radio("Select Supervision Category",["Supervised","Un-Supervised"],index =0) == "Supervised":
        
        selected_column = st.selectbox('Select Target column', df.columns, index=(len(df.columns)-1))
        
        # Display the selected column
        st.write('You selected:', selected_column)
        
        y = df[selected_column]
        
        if y.dtype == "O":
            st.write("⚠️⚠️⚠️ Target Column is Object Type ⚠️⚠️⚠️")
            if st.radio("Proceed for Label Encoding ",["Yes","No"],index = 1) == "Yes": 
                from sklearn.preprocessing import LabelEncoder
                le = LabelEncoder()
                y= pd.Series(le.fit_transform(y))
                st.write("Label Encoding Completed βœ…")
                
        if st.radio("Display Target Column",["Yes","No"],index =1) == "Yes":
                st.dataframe(y.head())


        select_target_trans = st.radio("Target column Transformation",["Yes","No"],index = 1)
        if  select_target_trans == "Yes":
            selected_transformation = st.selectbox("Select Transformation method",["Log Transformation","Power Transformation"])
            if selected_transformation == "Log Transformation":
                if y.min() <=0:
                    st.write("Values in target columns are zeroes or negative, please select power transformation")
                else:    
                    log_selected_transformation = st.selectbox("Select Logarithmic method",["Natural Log base(e)","Log base 10","Log base (2)"])
                    if log_selected_transformation == "Natural Log base(e)":
                        y = np.log(y)
                        st.write("Log base (e) Transformation Completed βœ…")
                    elif log_selected_transformation == "Log base 10":
                        y = np.log10(y)
                        st.write("Log base 10 Transformation Completed βœ…")
                    elif log_selected_transformation == "Log base (2)":
                        y = np.log2(y)
                        st.write("Log base 2 Transformation Completed βœ…")
            elif selected_transformation == "Power Transformation":
                power_selected_transformation = st.selectbox("Select Power Transformation method",["Square Root","Other"])
                if power_selected_transformation == "Square Root":
                    y = np.sqrt(y)
                    st.write("Square root Transformation Completed βœ…")
                elif power_selected_transformation == "Other":
                    power_value = st.number_input("Enter Power Value",value=3)
                    y = y**(1/power_value)
                    st.write(f"power root of {power_value} Transformation Completed βœ…")       
        
            if st.radio("Display Target Column after Transformation",["Yes","No"],index =1) == "Yes":
                st.dataframe(y.head())
# inverse of transformation

        X = df.drop(columns = selected_column)

        if st.radio("Display X-Train Data",["Yes","No"],index =1) == "Yes":
            st.dataframe(X.head())
        if st.radio("Check for duplicate Values",["Yes","No"],index = 1) == "Yes":    
            len_duplicates = len(X[X.duplicated()])
            if len_duplicates >0:
                st.write(f"There are {len_duplicates} duplicate values in Train")
                if st.selectbox("Drop Duplicate values",["Yes","No"],index = 1) == "Yes":
                    X = X.drop_duplicates()
                    st.write("Duplicate values removed βœ…")
            else:
                st.write("There are no duplicate values in Train")
        # dropping not important columns
        if st.radio("Drop Un-Important Column(s)",["Yes","No"],index = 1) == "Yes":
            selected_drop_column = st.multiselect('Select columns to be dropped', X.columns)
            X = X.drop(columns = selected_drop_column)
            if len(test) >0:
                test = test.drop(columns = selected_drop_column)
            st.write("Un-Important column(s) Delected βœ…")
            st.dataframe(X.head())

        num_cols = X.select_dtypes(exclude = "O").columns 
        cat_cols = X.select_dtypes(include = "O").columns
        st.write("Numerical Columns in Train Data: ", tuple(num_cols))
        st.write("Categorical Columns in Train Data: ", tuple(cat_cols))

        if st.radio("Select method for ML modelling", ["Manual","Auto Optimized"],index = 0) == "Auto Optimized":
            ml_cat_ao = st.radio("Select Machine Learning Category",["Regression","Classification"],index =0)

            if ml_cat_ao =="Regression":
                eva = "reg"
                st.write("Select ML algorithm")
                reg_model_name = st.selectbox("select model",models.Regression_models.index)  
                reg_model = models.Regression_models.loc[reg_model_name].values[0]
                auto_optimizer.Auto_optimizer(X,y,eva,reg_model)

            elif ml_cat_ao =="Classification":
                eva = "class"
                st.write("Select ML algorithm")
                class_model_name = st.selectbox("select model",models.Classification_models.index)
                class_model = models.Classification_models.loc[class_model_name].values[0]
                auto_optimizer.Auto_optimizer(X,y,eva,class_model)
           

        else:
            if X.isnull().sum().sum() >0 :
                st.write("⚠️⚠️⚠️ There are missing values in Train Data ⚠️⚠️⚠️")

                if st.selectbox("Drop null values or Impute",["Drop Null Values","Impute Null Values"],index = 1) == "Drop Null Values":

                    X = X.dropna()
                    if len(test) >0:
                        st.write("⚠️⚠️⚠️ If choosing drop values, test dataset will also drop those values please choose missing value imputation method befittingly.⚠️⚠️⚠️ ")
                        test = test.dropna()

                clean_num_nvh_df = pd.DataFrame()
                if X[num_cols].isnull().sum().sum() >0:
                    st.write("Numerical Columns with Percentage of Null Values: ")
                    num_cols_nvh = X[num_cols].isnull().sum()[X[num_cols].isnull().sum()>0].index
                    st.dataframe(round(X[num_cols].isnull().sum()[X[num_cols].isnull().sum()>0]/len(X)*100,2))
                    dict_1= {}
                    for nvh_method in null_value_handling.null_value_handling_method_num_cols :
                        
                        selected_nvh_num_cols = st.multiselect(f'method:- \"{nvh_method}\" for Numerical columns', num_cols_nvh,)
                        dict_1[nvh_method] = selected_nvh_num_cols

                        num_cols_nvh = set(num_cols_nvh) - set(selected_nvh_num_cols)
                        if len(num_cols_nvh) ==0:
                            break
                    num_nvh_df = pd.DataFrame(data=dict_1.values(), index=dict_1.keys())

                    clean_num_nvh_df = num_nvh_df.T[num_nvh_df.T.count()[num_nvh_df.T.count()>0].index]
                    
                    st.write("Methods for Numerical columns null value handling",clean_num_nvh_df )

                if len(test) >0:
                    if test[num_cols].isnull().sum().sum() >0:    
                        test_num_cols_nvh = test[num_cols].isnull().sum()[test[num_cols].isnull().sum()>0].index
                        st.write("Columns with Null Value in Test",test_num_cols_nvh)
                        test[num_cols] = IterativeImputer(max_iter = 200,random_state= 42).fit_transform(test[num_cols])
                

                clean_num_nvh_df_cat = pd.DataFrame()
                if X[cat_cols].isnull().sum().sum() >0:
                    st.write("Categorical Columns with Percentage of Null Values: ")
                    cat_cols_nvh = X[cat_cols].isnull().sum()[X[cat_cols].isnull().sum()>0].index
                    st.dataframe(round(X[cat_cols].isnull().sum()[X[cat_cols].isnull().sum()>0]/len(X)*100,2))

                    dict_2= {}
                    for nvh_method in null_value_handling.null_value_handling_method_cat_cols :
                        st.write("dsff",nvh_method)
                        
                        selected_nvh_num_cols = st.multiselect(f'method:- \"{nvh_method}\" for Numerical columns', cat_cols_nvh,)
                        dict_2[nvh_method] = selected_nvh_num_cols

                        cat_cols_nvh = set(cat_cols_nvh) - set(selected_nvh_num_cols)
                        if len(cat_cols_nvh) ==0:
                            break
                    num_nvh_df_cat = pd.DataFrame(data=dict_2.values(), index=dict_2.keys())
                    clean_num_nvh_df_cat = num_nvh_df_cat.T
                    st.write("Methods for Categorical columns null value handling",[clean_num_nvh_df_cat])  

                if len(test) >0:
                    if test[cat_cols].isnull().sum().sum() >0:    
                        test_num_cols_nvh_cat = test[cat_cols].isnull().sum()[test[cat_cols].isnull().sum()>0].index
                        st.write("sdgs",test_num_cols_nvh_cat)
                        test[cat_cols] = SimpleImputer(strategy = "most_frequent").fit_transform(test[cat_cols])

                
                null_value_handling.null_handling(X,clean_num_nvh_df,clean_num_nvh_df_cat)
                st.write("X Data after Null value handling", X.head())

            new_df = pd.concat([X,y[X.index]],axis = 1)
            
            csv = new_df.to_csv(index = False)
            if st.radio("Download Null Value Handled DataFrame as CSV File ? ",["Yes","No"],index = 1) == "Yes": 
                st.download_button(label="Download Null Value Handled CSV File",data=csv,file_name='NVH_DataFrame.csv',mime='text/csv')

            ord_enc_cols = []

            if len(cat_cols) == 0:
                st.write("No Categorical Columns in Train")
            else:
                st.write("Select Columns for Ordinal Encoding")
                for column in cat_cols:

                    selected = st.checkbox(column)
                    if selected:
                        st.write(f"No. of Unique value in {column} column are", X[column].nunique())
                        ord_enc_cols.append(column)
            ohe_enc_cols = set(cat_cols) -set(ord_enc_cols)
            ohe_enc_cols = list(ohe_enc_cols)
            if len(ord_enc_cols)>0:
                st.write("ordinal encoded columns" ,tuple(ord_enc_cols))
            if len(ohe_enc_cols)>0:
                st.write("one hot encoded columns" ,tuple(ohe_enc_cols))

            if len(ord_enc_cols)>0:
                if st.radio("proceed for ordinal encoding",["Yes","No"],index = 1) == "Yes":
                    ordinal_order_vals = []

                    for column in ord_enc_cols:
                        unique_vals = X[column].unique()
                        # st.write(f"No. of Unique value in {column} column are", len(unique_vals))
                                        
                        ordered_unique_vals = st.multiselect("Select values in order for Ordinal Encoding",unique_vals,unique_vals)
                        ordinal_order_vals.append(ordered_unique_vals)
                    
                    st.write("order of values for Ordinal Encoding",tuple(ordinal_order_vals))   
                    # import ordinal encoder
                    from sklearn.preprocessing import OrdinalEncoder
                    ord = OrdinalEncoder(categories=ordinal_order_vals,handle_unknown= "use_encoded_value",unknown_value = -1 )
                    X[ord_enc_cols] = ord.fit_transform(X[ord_enc_cols])
                    if len(test) >0:
                        test[ord_enc_cols] = ord.transform(test[ord_enc_cols])
                    st.write("DataFrame after Ordinal Encoding",X.head())
                    st.write("Ordinal Encoding Completed βœ…")

            if len(ohe_enc_cols)>0:
                if st.radio("proceed for OnehotEncoding ",["Yes","No"],index = 1) == "Yes":    # import one hot encoder
                    from sklearn.preprocessing import OneHotEncoder
                    ohe = OneHotEncoder(sparse_output = False,handle_unknown = "ignore")
                    pd.options.mode.chained_assignment = None
                    X.loc[:, ohe.get_feature_names_out()] = ohe.fit_transform(X[ohe_enc_cols])
                    X.drop(columns = ohe_enc_cols,inplace = True)
                    if len(test) >0:
                        test.loc[:, ohe.get_feature_names_out()] = ohe.transform(test[ohe_enc_cols])
                        test.drop(columns = ohe_enc_cols,inplace = True)

                    pd.options.mode.chained_assignment = 'warn'

                    st.write("DataFrame after One Hot Encoding",X.head())
                    st.write("OneHot Encoding Completed βœ…")
            
            new_df = pd.concat([X,y],axis = 1)
            
            csv = new_df.to_csv(index = False)
            if st.radio("Download Encoded DataFrame as CSV File ? ",["Yes","No"],index = 1) == "Yes": 
                st.download_button(label="Download Ordinal Encoded CSV File",data=csv,file_name='Encoded_DataFrame.csv',mime='text/csv')

            
            random_state = st.number_input("Enter Random_state",max_value=100,min_value=1,value=42) 
            test_size = st.number_input("Enter test_size",max_value=0.99, min_value = 0.01,value =0.2)      
            if st.radio("select Train Validation Split Method",
                        [f"Train_Test_split, Default (Random_state = {random_state},Test_size = {test_size})",
                        "KFoldCV, Default (CV = 5)"], index = 0)== f"Train_Test_split, Default (Random_state = {random_state},Test_size = {test_size})":
                ttsmethod = "Train_Test_split"
            else:
                ttsmethod = "KFoldCV"
            st.write('You selected:', ttsmethod)
            if ttsmethod == "Train_Test_split":
                X_train,X_Val,y_train,y_val = tts(X,y[X.index],random_state = random_state,test_size = test_size)
                st.write('X-Training Data shape:', (X_train.info()))
                
                st.write('X-Training Data shape:', X_train.shape)
                st.write('X-Validation Data shape:', X_Val.shape)

            ml_cat = st.radio("Select Machine Learning Category",["Regression","Classification"],index =0)

            if ml_cat =="Regression":
                method_name_selector = st.selectbox("Select Error Evaluation Method",evaluationer.method_df.index,index = 0)

                method = evaluationer.method_df.loc[method_name_selector].values[0]
                reg_algorithm = []
                selected_options = []

                for option in models.Regression_models.index:
                    selected = st.checkbox(option)
                    if selected:
                        selected_options.append(option)

                        param = models.Regression_models.loc[option][0].get_params()
                        Temp_parameter = pd.DataFrame(data=param.values(), index=param.keys())                    
                        Temp_parameter_transposed = Temp_parameter.T
                        parameter = pd.DataFrame(data=param.values(), index=param.keys())
                        def is_boolean(val):
                            return isinstance(val, bool)

                        # Apply the function to the DataFrame column and create a new column with the resuSlts
                        bool_cols= parameter[parameter[0].apply(is_boolean)].index
                        param_transposed = parameter.T
                        # st.write("hrweurgesj",param_transposed.loc[:, bool_cols])
                        # st.write("bool_cols",bool_cols)
                        remaining_cols = set(param_transposed.columns) - set(bool_cols)
                        remaining_cols = tuple(remaining_cols)
                        # st.write("rem_Cols",remaining_cols)

                        for col in remaining_cols:    
                            param_transposed[col] = pd.to_numeric(param_transposed[col],errors="ignore")
                        cat_cols = param_transposed.select_dtypes(include = ["O"]).T.index.to_list()
                        num_cols = set(remaining_cols) - set(cat_cols)
                        cat_cols = set(cat_cols) - set(bool_cols)
                        num_cols = tuple(num_cols)
                        # st.write("sdsafdsd",num_cols)
                        for i in num_cols:
                            param_transposed[i] = st.number_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
                        for i in cat_cols:
                            param_transposed[i] = st.text_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
                        for i in bool_cols:
                            st.write("default value to insert",Temp_parameter_transposed[i].values[0])
                            param_transposed[i] = st.selectbox(f"input \"{i}\" value \n{option}",[False, True], index=Temp_parameter_transposed[i].values[0])
                            
                        inv_param = param_transposed.T
                        new_param = inv_param.dropna().loc[:,0].to_dict()
                        # st.write("asad",new_param)
                        models.Regression_models.loc[option][0].set_params(**new_param)
                        a =  models.Regression_models.loc[option][0].get_params()
                        reg_algorithm.append(models.Regression_models.loc[option][0])
                if st.button("Train Regression Model"):
                    for algorithm in reg_algorithm:
                        evaluationer.evaluation(f"{algorithm} baseline",X_train,X_Val,y_train,y_val,algorithm,method,"reg")
                    st.write("Regression Model Trained Successfully",evaluationer.reg_evaluation_df)
                if len(test)>0:
                    if st.radio("Predict",["Yes","No"],index = 1) =="Yes":

                        if len(evaluationer.reg_evaluation_df) >0:
                            a = st.number_input("select index of best algorithm for test prediction",min_value = 0,max_value =len(evaluationer.reg_evaluation_df) -1, value = len(evaluationer.reg_evaluation_df) -1)
                            
                            test_prediction = evaluationer.reg_evaluation_df.loc[a,"model"].predict(test)
                            if  select_target_trans == "Yes":
                                if selected_transformation == "Log Transformation":
                                    if log_selected_transformation == "Natural Log base(e)":
                                        test_prediction = np.exp(test_prediction)
                                        st.write("Natural Log base(e) Inverse Transformation Completed βœ…")
                                    elif log_selected_transformation == "Log base 10":
                                        test_prediction = np.power(10,test_prediction)
                                        st.write("Log base 10 Inverse Transformation Completed βœ…")
                                    elif log_selected_transformation == "Log base (2)":
                                        test_prediction = np.power(2,test_prediction)
                                        st.write("Log base 2 Inverse Transformation Completed βœ…")
                                elif selected_transformation == "Power Transformation":
                                    if power_selected_transformation == "Square Root":
                                        test_prediction = np.power(test_prediction,2)
                                        st.write("Square root Inverse Transformation Completed βœ…")
                                    elif power_selected_transformation == "Other":
                                        test_prediction = test_prediction**(power_value)
                                        st.write(f"power root of {power_value} Inverse Transformation Completed βœ…")
                            submission_file = pd.DataFrame(index = [submission_id],data = test_prediction,columns = [selected_column])
                            st.write("Sample of Prediction File",submission_file.head())
                            csv_prediction = submission_file.to_csv()
                            if st.radio("Download Prediction File as CSV File ? ",["Yes","No"],index = 1) == "Yes": 
                                st.download_button(label="Download Prediction CSV File",data=csv_prediction,file_name='prediction.csv',mime='text/csv')

            

                
            if ml_cat =="Classification":
                
                
                
                cla_algorithm = []
                selected_options = []

                for option in models.Classification_models.index:
                    selected = st.checkbox(option)
                    if selected:
                        selected_options.append(option)
                        
                        param = models.Classification_models.loc[option][0].get_params()
                                
                        
                        parameter = pd.DataFrame(data=param.values(), index=param.keys())
                        Temp_parameter = parameter.copy()
                        Temp_parameter_transposed = (Temp_parameter.T).copy()    
                        def is_boolean(val):
                            return isinstance(val, bool)

                        # Apply the function to the DataFrame column and create a new column with the resuSlts
                        bool_cols= parameter[parameter[0].apply(is_boolean)].index
                        param_transposed = parameter.T
                        st.write("bool_cols",bool_cols)
                        remaining_cols = set(param_transposed.columns) - set(bool_cols)
                        remaining_cols = tuple(remaining_cols)
                        st.write("rem_Cols",remaining_cols)

                        for col in remaining_cols:    
                            param_transposed[col] = pd.to_numeric(param_transposed[col],errors="ignore")
                        cat_cols = param_transposed.select_dtypes(include = ["O"]).T.index.to_list()
                        num_cols = set(remaining_cols) - set(cat_cols)
                        num_cols = tuple(num_cols)
                        st.write("sdsafdsd",num_cols)
                        for i in num_cols:
                            param_transposed[i] = st.number_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
                        for i in cat_cols:
                            param_transposed[i] = st.text_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
                        for i in bool_cols:
                            st.write("default value to insert",Temp_parameter_transposed[i].values[0])
                            param_transposed[i] = st.selectbox(f"input \"{i}\" value \n{option}",[False,True], index=Temp_parameter_transposed[i].values[0])
                        inv_param = param_transposed.T
                        new_param = inv_param.dropna().loc[:,0].to_dict()
                        st.write("asad",new_param)
                        models.Classification_models.loc[option][0].set_params(**new_param)
                        a =  models.Classification_models.loc[option][0].get_params()
                        cla_algorithm.append(models.Classification_models.loc[option][0])
                # st.write("sada",reg_algorithm/)
                if st.button("Train Regression Model"):
                    method = None
                    for algorithm in cla_algorithm:
                        evaluationer.evaluation(f"{algorithm} baseline",X_train,X_Val,y_train,y_val,algorithm,method,eva ="class")
                    st.write("Regression Model Trained Successfully",evaluationer.classification_evaluation_df)

                if len(test)>0:
                    if st.radio("Predict",["Yes","No"],index = 1) =="Yes":
                        if len(evaluationer.classification_evaluation_df) >0:
                            a = st.number_input("select index of best algorithm for test prediction",min_value = 0,max_value =len(evaluationer.classification_evaluation_df) -1, value = len(evaluationer.classification_evaluation_df) -1)
                            
                            test_prediction = evaluationer.classification_evaluation_df.loc[a,"model"].predict(test)    
                            if  select_target_trans == "Yes":
                                if selected_transformation == "Log Transformation":
                                    if log_selected_transformation == "Natural Log base(e)":
                                        test_prediction = np.exp(test_prediction)
                                        st.write("Natural Log base(e) Inverse Transformation Completed βœ…")
                                    elif log_selected_transformation == "Log base 10":
                                        test_prediction = np.power(10,test_prediction)
                                        st.write("Log base 10 Inverse Transformation Completed βœ…")
                                    elif log_selected_transformation == "Log base (2)":
                                        test_prediction = np.power(2,test_prediction)
                                        st.write("Log base 2 Inverse Transformation Completed βœ…")
                                elif selected_transformation == "Power Transformation":
                                    if power_selected_transformation == "Square Root":
                                        test_prediction = np.power(test_prediction,2)
                                        st.write("Square root Inverse Transformation Completed βœ…")
                                    elif power_selected_transformation == "Other":
                                        test_prediction = test_prediction**(power_value)
                                        st.write(f"power root of {power_value} Inverse Transformation Completed βœ…")
                          
                            submission_file = pd.DataFrame(index = [submission_id],data = test_prediction,columns = [selected_column])
                            st.write("Sample of Prediction File",submission_file.head())
                            csv_prediction = submission_file.to_csv()
                            if st.radio("Download Prediction File as CSV File ? ",["Yes","No"],index = 1) == "Yes": 
                                st.download_button(label="Download Prediction CSV File",data=csv_prediction,file_name='prediction.csv',mime='text/csv')