File size: 30,555 Bytes
a8af817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
# import libraries
import streamlit as st
import joblib
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split as tts
import evaluationer,models, null_value_handling
import auto_optimizer
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import SimpleImputer, IterativeImputer
# st.set_page_config(layout="wide")
st.set_page_config(
page_title="LazyML App",
page_icon="π§",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://www.extremelycoolapp.com/help',
'Report a bug': "https://www.extremelycoolapp.com/bug",
'About': "# This is a header. This is an *extremely* cool app!"
}
)
import streamlit as st
# Title with Rainbow Transition Effect and Neon Glow
html_code = """
<div class="title-container">
<h1 class="neon-text">
LazyML
</h1>
</div>
<style>
@keyframes rainbow-text-animation {
0% { color: red; }
16.67% { color: orange; }
33.33% { color: yellow; }
50% { color: green; }
66.67% { color: blue; }
83.33% { color: indigo; }
100% { color: violet; }
}
.title-container {
text-align: center;
margin: 1em 0;
padding-bottom: 10px;
border-bottom: 4 px solid #fcdee9; /* Magenta underline */
}
.neon-text {
font-family: Arial, sans-serif;
font-size: 4em;
margin: 0;
animation: rainbow-text-animation 5s infinite linear;
text-shadow: 0 0 5px rgba(255, 255, 255, 0.8),
0 0 10px rgba(255, 255, 255, 0.7),
0 0 20px rgba(255, 255, 255, 0.6),
0 0 40px rgba(255, 0, 255, 0.6),
0 0 80px rgba(255, 0, 255, 0.6),
0 0 90px rgba(255, 0, 255, 0.6),
0 0 100px rgba(255, 0, 255, 0.6),
0 0 150px rgba(255, 0, 255, 0.6);
}
</style>
"""
st.markdown(html_code, unsafe_allow_html=True)
# file uploader
csv_upload = st.sidebar.file_uploader("Input CSV File for ML modelling", type=['csv'])
csv_upload2 = st.sidebar.file_uploader("Input CSV File of Test Data Prediction",type = ["csv"])
test = pd.DataFrame()
if csv_upload is not None:
# read the uploaded file into dataframe
df = pd.read_csv(csv_upload)
# saving the dataframe to a CSV file
df.to_csv('csv_upload.csv', index=False)
st.write("Train File uploaded successfully. β
")
if csv_upload2 is not None:
test = pd.read_csv(csv_upload2)
id_col = st.selectbox("select column for submission i.e, ID",test.columns)
submission_id = test[id_col]
# st.write("Train File upl",submission_id)
if len(test) >0:
# saving the test dataframe to a CSV file
test.to_csv('csv_upload_test.csv', index=False)
st.write("Test File uploaded successfully. β
")
display_train_data = st.radio("Display Train Data",["Yes","No"],index = 1)
if display_train_data == "Yes":
st.dataframe(df.head())
if len(test) >0:
display_test_data = st.radio("Display Test Data",["Yes","No"],index = 1)
if display_test_data == "Yes":
st.dataframe(test.head())
if st.radio("Select Supervision Category",["Supervised","Un-Supervised"],index =0) == "Supervised":
selected_column = st.selectbox('Select Target column', df.columns, index=(len(df.columns)-1))
# Display the selected column
st.write('You selected:', selected_column)
y = df[selected_column]
if y.dtype == "O":
st.write("β οΈβ οΈβ οΈ Target Column is Object Type β οΈβ οΈβ οΈ")
if st.radio("Proceed for Label Encoding ",["Yes","No"],index = 1) == "Yes":
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y= pd.Series(le.fit_transform(y))
st.write("Label Encoding Completed β
")
if st.radio("Display Target Column",["Yes","No"],index =1) == "Yes":
st.dataframe(y.head())
select_target_trans = st.radio("Target column Transformation",["Yes","No"],index = 1)
if select_target_trans == "Yes":
selected_transformation = st.selectbox("Select Transformation method",["Log Transformation","Power Transformation"])
if selected_transformation == "Log Transformation":
if y.min() <=0:
st.write("Values in target columns are zeroes or negative, please select power transformation")
else:
log_selected_transformation = st.selectbox("Select Logarithmic method",["Natural Log base(e)","Log base 10","Log base (2)"])
if log_selected_transformation == "Natural Log base(e)":
y = np.log(y)
st.write("Log base (e) Transformation Completed β
")
elif log_selected_transformation == "Log base 10":
y = np.log10(y)
st.write("Log base 10 Transformation Completed β
")
elif log_selected_transformation == "Log base (2)":
y = np.log2(y)
st.write("Log base 2 Transformation Completed β
")
elif selected_transformation == "Power Transformation":
power_selected_transformation = st.selectbox("Select Power Transformation method",["Square Root","Other"])
if power_selected_transformation == "Square Root":
y = np.sqrt(y)
st.write("Square root Transformation Completed β
")
elif power_selected_transformation == "Other":
power_value = st.number_input("Enter Power Value",value=3)
y = y**(1/power_value)
st.write(f"power root of {power_value} Transformation Completed β
")
if st.radio("Display Target Column after Transformation",["Yes","No"],index =1) == "Yes":
st.dataframe(y.head())
# inverse of transformation
X = df.drop(columns = selected_column)
if st.radio("Display X-Train Data",["Yes","No"],index =1) == "Yes":
st.dataframe(X.head())
if st.radio("Check for duplicate Values",["Yes","No"],index = 1) == "Yes":
len_duplicates = len(X[X.duplicated()])
if len_duplicates >0:
st.write(f"There are {len_duplicates} duplicate values in Train")
if st.selectbox("Drop Duplicate values",["Yes","No"],index = 1) == "Yes":
X = X.drop_duplicates()
st.write("Duplicate values removed β
")
else:
st.write("There are no duplicate values in Train")
# dropping not important columns
if st.radio("Drop Un-Important Column(s)",["Yes","No"],index = 1) == "Yes":
selected_drop_column = st.multiselect('Select columns to be dropped', X.columns)
X = X.drop(columns = selected_drop_column)
if len(test) >0:
test = test.drop(columns = selected_drop_column)
st.write("Un-Important column(s) Delected β
")
st.dataframe(X.head())
num_cols = X.select_dtypes(exclude = "O").columns
cat_cols = X.select_dtypes(include = "O").columns
st.write("Numerical Columns in Train Data: ", tuple(num_cols))
st.write("Categorical Columns in Train Data: ", tuple(cat_cols))
if st.radio("Select method for ML modelling", ["Manual","Auto Optimized"],index = 0) == "Auto Optimized":
ml_cat_ao = st.radio("Select Machine Learning Category",["Regression","Classification"],index =0)
if ml_cat_ao =="Regression":
eva = "reg"
st.write("Select ML algorithm")
reg_model_name = st.selectbox("select model",models.Regression_models.index)
reg_model = models.Regression_models.loc[reg_model_name].values[0]
auto_optimizer.Auto_optimizer(X,y,eva,reg_model)
elif ml_cat_ao =="Classification":
eva = "class"
st.write("Select ML algorithm")
class_model_name = st.selectbox("select model",models.Classification_models.index)
class_model = models.Classification_models.loc[class_model_name].values[0]
auto_optimizer.Auto_optimizer(X,y,eva,class_model)
else:
if X.isnull().sum().sum() >0 :
st.write("β οΈβ οΈβ οΈ There are missing values in Train Data β οΈβ οΈβ οΈ")
if st.selectbox("Drop null values or Impute",["Drop Null Values","Impute Null Values"],index = 1) == "Drop Null Values":
X = X.dropna()
if len(test) >0:
st.write("β οΈβ οΈβ οΈ If choosing drop values, test dataset will also drop those values please choose missing value imputation method befittingly.β οΈβ οΈβ οΈ ")
test = test.dropna()
clean_num_nvh_df = pd.DataFrame()
if X[num_cols].isnull().sum().sum() >0:
st.write("Numerical Columns with Percentage of Null Values: ")
num_cols_nvh = X[num_cols].isnull().sum()[X[num_cols].isnull().sum()>0].index
st.dataframe(round(X[num_cols].isnull().sum()[X[num_cols].isnull().sum()>0]/len(X)*100,2))
dict_1= {}
for nvh_method in null_value_handling.null_value_handling_method_num_cols :
selected_nvh_num_cols = st.multiselect(f'method:- \"{nvh_method}\" for Numerical columns', num_cols_nvh,)
dict_1[nvh_method] = selected_nvh_num_cols
num_cols_nvh = set(num_cols_nvh) - set(selected_nvh_num_cols)
if len(num_cols_nvh) ==0:
break
num_nvh_df = pd.DataFrame(data=dict_1.values(), index=dict_1.keys())
clean_num_nvh_df = num_nvh_df.T[num_nvh_df.T.count()[num_nvh_df.T.count()>0].index]
st.write("Methods for Numerical columns null value handling",clean_num_nvh_df )
if len(test) >0:
if test[num_cols].isnull().sum().sum() >0:
test_num_cols_nvh = test[num_cols].isnull().sum()[test[num_cols].isnull().sum()>0].index
st.write("Columns with Null Value in Test",test_num_cols_nvh)
test[num_cols] = IterativeImputer(max_iter = 200,random_state= 42).fit_transform(test[num_cols])
clean_num_nvh_df_cat = pd.DataFrame()
if X[cat_cols].isnull().sum().sum() >0:
st.write("Categorical Columns with Percentage of Null Values: ")
cat_cols_nvh = X[cat_cols].isnull().sum()[X[cat_cols].isnull().sum()>0].index
st.dataframe(round(X[cat_cols].isnull().sum()[X[cat_cols].isnull().sum()>0]/len(X)*100,2))
dict_2= {}
for nvh_method in null_value_handling.null_value_handling_method_cat_cols :
st.write("dsff",nvh_method)
selected_nvh_num_cols = st.multiselect(f'method:- \"{nvh_method}\" for Numerical columns', cat_cols_nvh,)
dict_2[nvh_method] = selected_nvh_num_cols
cat_cols_nvh = set(cat_cols_nvh) - set(selected_nvh_num_cols)
if len(cat_cols_nvh) ==0:
break
num_nvh_df_cat = pd.DataFrame(data=dict_2.values(), index=dict_2.keys())
clean_num_nvh_df_cat = num_nvh_df_cat.T
st.write("Methods for Categorical columns null value handling",[clean_num_nvh_df_cat])
if len(test) >0:
if test[cat_cols].isnull().sum().sum() >0:
test_num_cols_nvh_cat = test[cat_cols].isnull().sum()[test[cat_cols].isnull().sum()>0].index
st.write("sdgs",test_num_cols_nvh_cat)
test[cat_cols] = SimpleImputer(strategy = "most_frequent").fit_transform(test[cat_cols])
null_value_handling.null_handling(X,clean_num_nvh_df,clean_num_nvh_df_cat)
st.write("X Data after Null value handling", X.head())
new_df = pd.concat([X,y[X.index]],axis = 1)
csv = new_df.to_csv(index = False)
if st.radio("Download Null Value Handled DataFrame as CSV File ? ",["Yes","No"],index = 1) == "Yes":
st.download_button(label="Download Null Value Handled CSV File",data=csv,file_name='NVH_DataFrame.csv',mime='text/csv')
ord_enc_cols = []
if len(cat_cols) == 0:
st.write("No Categorical Columns in Train")
else:
st.write("Select Columns for Ordinal Encoding")
for column in cat_cols:
selected = st.checkbox(column)
if selected:
st.write(f"No. of Unique value in {column} column are", X[column].nunique())
ord_enc_cols.append(column)
ohe_enc_cols = set(cat_cols) -set(ord_enc_cols)
ohe_enc_cols = list(ohe_enc_cols)
if len(ord_enc_cols)>0:
st.write("ordinal encoded columns" ,tuple(ord_enc_cols))
if len(ohe_enc_cols)>0:
st.write("one hot encoded columns" ,tuple(ohe_enc_cols))
if len(ord_enc_cols)>0:
if st.radio("proceed for ordinal encoding",["Yes","No"],index = 1) == "Yes":
ordinal_order_vals = []
for column in ord_enc_cols:
unique_vals = X[column].unique()
# st.write(f"No. of Unique value in {column} column are", len(unique_vals))
ordered_unique_vals = st.multiselect("Select values in order for Ordinal Encoding",unique_vals,unique_vals)
ordinal_order_vals.append(ordered_unique_vals)
st.write("order of values for Ordinal Encoding",tuple(ordinal_order_vals))
# import ordinal encoder
from sklearn.preprocessing import OrdinalEncoder
ord = OrdinalEncoder(categories=ordinal_order_vals,handle_unknown= "use_encoded_value",unknown_value = -1 )
X[ord_enc_cols] = ord.fit_transform(X[ord_enc_cols])
if len(test) >0:
test[ord_enc_cols] = ord.transform(test[ord_enc_cols])
st.write("DataFrame after Ordinal Encoding",X.head())
st.write("Ordinal Encoding Completed β
")
if len(ohe_enc_cols)>0:
if st.radio("proceed for OnehotEncoding ",["Yes","No"],index = 1) == "Yes": # import one hot encoder
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(sparse_output = False,handle_unknown = "ignore")
pd.options.mode.chained_assignment = None
X.loc[:, ohe.get_feature_names_out()] = ohe.fit_transform(X[ohe_enc_cols])
X.drop(columns = ohe_enc_cols,inplace = True)
if len(test) >0:
test.loc[:, ohe.get_feature_names_out()] = ohe.transform(test[ohe_enc_cols])
test.drop(columns = ohe_enc_cols,inplace = True)
pd.options.mode.chained_assignment = 'warn'
st.write("DataFrame after One Hot Encoding",X.head())
st.write("OneHot Encoding Completed β
")
new_df = pd.concat([X,y],axis = 1)
csv = new_df.to_csv(index = False)
if st.radio("Download Encoded DataFrame as CSV File ? ",["Yes","No"],index = 1) == "Yes":
st.download_button(label="Download Ordinal Encoded CSV File",data=csv,file_name='Encoded_DataFrame.csv',mime='text/csv')
random_state = st.number_input("Enter Random_state",max_value=100,min_value=1,value=42)
test_size = st.number_input("Enter test_size",max_value=0.99, min_value = 0.01,value =0.2)
if st.radio("select Train Validation Split Method",
[f"Train_Test_split, Default (Random_state = {random_state},Test_size = {test_size})",
"KFoldCV, Default (CV = 5)"], index = 0)== f"Train_Test_split, Default (Random_state = {random_state},Test_size = {test_size})":
ttsmethod = "Train_Test_split"
else:
ttsmethod = "KFoldCV"
st.write('You selected:', ttsmethod)
if ttsmethod == "Train_Test_split":
X_train,X_Val,y_train,y_val = tts(X,y[X.index],random_state = random_state,test_size = test_size)
st.write('X-Training Data shape:', (X_train.info()))
st.write('X-Training Data shape:', X_train.shape)
st.write('X-Validation Data shape:', X_Val.shape)
ml_cat = st.radio("Select Machine Learning Category",["Regression","Classification"],index =0)
if ml_cat =="Regression":
method_name_selector = st.selectbox("Select Error Evaluation Method",evaluationer.method_df.index,index = 0)
method = evaluationer.method_df.loc[method_name_selector].values[0]
reg_algorithm = []
selected_options = []
for option in models.Regression_models.index:
selected = st.checkbox(option)
if selected:
selected_options.append(option)
param = models.Regression_models.loc[option][0].get_params()
Temp_parameter = pd.DataFrame(data=param.values(), index=param.keys())
Temp_parameter_transposed = Temp_parameter.T
parameter = pd.DataFrame(data=param.values(), index=param.keys())
def is_boolean(val):
return isinstance(val, bool)
# Apply the function to the DataFrame column and create a new column with the resuSlts
bool_cols= parameter[parameter[0].apply(is_boolean)].index
param_transposed = parameter.T
# st.write("hrweurgesj",param_transposed.loc[:, bool_cols])
# st.write("bool_cols",bool_cols)
remaining_cols = set(param_transposed.columns) - set(bool_cols)
remaining_cols = tuple(remaining_cols)
# st.write("rem_Cols",remaining_cols)
for col in remaining_cols:
param_transposed[col] = pd.to_numeric(param_transposed[col],errors="ignore")
cat_cols = param_transposed.select_dtypes(include = ["O"]).T.index.to_list()
num_cols = set(remaining_cols) - set(cat_cols)
cat_cols = set(cat_cols) - set(bool_cols)
num_cols = tuple(num_cols)
# st.write("sdsafdsd",num_cols)
for i in num_cols:
param_transposed[i] = st.number_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
for i in cat_cols:
param_transposed[i] = st.text_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
for i in bool_cols:
st.write("default value to insert",Temp_parameter_transposed[i].values[0])
param_transposed[i] = st.selectbox(f"input \"{i}\" value \n{option}",[False, True], index=Temp_parameter_transposed[i].values[0])
inv_param = param_transposed.T
new_param = inv_param.dropna().loc[:,0].to_dict()
# st.write("asad",new_param)
models.Regression_models.loc[option][0].set_params(**new_param)
a = models.Regression_models.loc[option][0].get_params()
reg_algorithm.append(models.Regression_models.loc[option][0])
if st.button("Train Regression Model"):
for algorithm in reg_algorithm:
evaluationer.evaluation(f"{algorithm} baseline",X_train,X_Val,y_train,y_val,algorithm,method,"reg")
st.write("Regression Model Trained Successfully",evaluationer.reg_evaluation_df)
if len(test)>0:
if st.radio("Predict",["Yes","No"],index = 1) =="Yes":
if len(evaluationer.reg_evaluation_df) >0:
a = st.number_input("select index of best algorithm for test prediction",min_value = 0,max_value =len(evaluationer.reg_evaluation_df) -1, value = len(evaluationer.reg_evaluation_df) -1)
test_prediction = evaluationer.reg_evaluation_df.loc[a,"model"].predict(test)
if select_target_trans == "Yes":
if selected_transformation == "Log Transformation":
if log_selected_transformation == "Natural Log base(e)":
test_prediction = np.exp(test_prediction)
st.write("Natural Log base(e) Inverse Transformation Completed β
")
elif log_selected_transformation == "Log base 10":
test_prediction = np.power(10,test_prediction)
st.write("Log base 10 Inverse Transformation Completed β
")
elif log_selected_transformation == "Log base (2)":
test_prediction = np.power(2,test_prediction)
st.write("Log base 2 Inverse Transformation Completed β
")
elif selected_transformation == "Power Transformation":
if power_selected_transformation == "Square Root":
test_prediction = np.power(test_prediction,2)
st.write("Square root Inverse Transformation Completed β
")
elif power_selected_transformation == "Other":
test_prediction = test_prediction**(power_value)
st.write(f"power root of {power_value} Inverse Transformation Completed β
")
submission_file = pd.DataFrame(index = [submission_id],data = test_prediction,columns = [selected_column])
st.write("Sample of Prediction File",submission_file.head())
csv_prediction = submission_file.to_csv()
if st.radio("Download Prediction File as CSV File ? ",["Yes","No"],index = 1) == "Yes":
st.download_button(label="Download Prediction CSV File",data=csv_prediction,file_name='prediction.csv',mime='text/csv')
if ml_cat =="Classification":
cla_algorithm = []
selected_options = []
for option in models.Classification_models.index:
selected = st.checkbox(option)
if selected:
selected_options.append(option)
param = models.Classification_models.loc[option][0].get_params()
parameter = pd.DataFrame(data=param.values(), index=param.keys())
Temp_parameter = parameter.copy()
Temp_parameter_transposed = (Temp_parameter.T).copy()
def is_boolean(val):
return isinstance(val, bool)
# Apply the function to the DataFrame column and create a new column with the resuSlts
bool_cols= parameter[parameter[0].apply(is_boolean)].index
param_transposed = parameter.T
st.write("bool_cols",bool_cols)
remaining_cols = set(param_transposed.columns) - set(bool_cols)
remaining_cols = tuple(remaining_cols)
st.write("rem_Cols",remaining_cols)
for col in remaining_cols:
param_transposed[col] = pd.to_numeric(param_transposed[col],errors="ignore")
cat_cols = param_transposed.select_dtypes(include = ["O"]).T.index.to_list()
num_cols = set(remaining_cols) - set(cat_cols)
num_cols = tuple(num_cols)
st.write("sdsafdsd",num_cols)
for i in num_cols:
param_transposed[i] = st.number_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
for i in cat_cols:
param_transposed[i] = st.text_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
for i in bool_cols:
st.write("default value to insert",Temp_parameter_transposed[i].values[0])
param_transposed[i] = st.selectbox(f"input \"{i}\" value \n{option}",[False,True], index=Temp_parameter_transposed[i].values[0])
inv_param = param_transposed.T
new_param = inv_param.dropna().loc[:,0].to_dict()
st.write("asad",new_param)
models.Classification_models.loc[option][0].set_params(**new_param)
a = models.Classification_models.loc[option][0].get_params()
cla_algorithm.append(models.Classification_models.loc[option][0])
# st.write("sada",reg_algorithm/)
if st.button("Train Regression Model"):
method = None
for algorithm in cla_algorithm:
evaluationer.evaluation(f"{algorithm} baseline",X_train,X_Val,y_train,y_val,algorithm,method,eva ="class")
st.write("Regression Model Trained Successfully",evaluationer.classification_evaluation_df)
if len(test)>0:
if st.radio("Predict",["Yes","No"],index = 1) =="Yes":
if len(evaluationer.classification_evaluation_df) >0:
a = st.number_input("select index of best algorithm for test prediction",min_value = 0,max_value =len(evaluationer.classification_evaluation_df) -1, value = len(evaluationer.classification_evaluation_df) -1)
test_prediction = evaluationer.classification_evaluation_df.loc[a,"model"].predict(test)
if select_target_trans == "Yes":
if selected_transformation == "Log Transformation":
if log_selected_transformation == "Natural Log base(e)":
test_prediction = np.exp(test_prediction)
st.write("Natural Log base(e) Inverse Transformation Completed β
")
elif log_selected_transformation == "Log base 10":
test_prediction = np.power(10,test_prediction)
st.write("Log base 10 Inverse Transformation Completed β
")
elif log_selected_transformation == "Log base (2)":
test_prediction = np.power(2,test_prediction)
st.write("Log base 2 Inverse Transformation Completed β
")
elif selected_transformation == "Power Transformation":
if power_selected_transformation == "Square Root":
test_prediction = np.power(test_prediction,2)
st.write("Square root Inverse Transformation Completed β
")
elif power_selected_transformation == "Other":
test_prediction = test_prediction**(power_value)
st.write(f"power root of {power_value} Inverse Transformation Completed β
")
submission_file = pd.DataFrame(index = [submission_id],data = test_prediction,columns = [selected_column])
st.write("Sample of Prediction File",submission_file.head())
csv_prediction = submission_file.to_csv()
if st.radio("Download Prediction File as CSV File ? ",["Yes","No"],index = 1) == "Yes":
st.download_button(label="Download Prediction CSV File",data=csv_prediction,file_name='prediction.csv',mime='text/csv')
|