File size: 38,029 Bytes
a8af817
 
 
 
 
 
 
 
 
 
f736b41
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
ba67510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba67510
 
f736b41
 
ba67510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8af817
 
ba67510
a8af817
 
ba67510
 
 
 
a8af817
ba67510
f736b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8af817
 
 
ba67510
a8af817
 
 
ba67510
 
a8af817
ba67510
 
 
 
 
a8af817
 
 
 
 
 
 
 
 
ba67510
a8af817
ba67510
 
a8af817
 
 
 
 
 
 
 
 
ba67510
 
 
 
 
 
 
a8af817
 
 
ba67510
 
 
 
 
 
 
 
a8af817
 
 
ba67510
 
 
a8af817
 
 
ba67510
 
a8af817
 
ba67510
 
 
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba67510
 
a8af817
 
 
 
 
ba67510
 
 
 
 
a8af817
 
 
ba67510
 
a8af817
 
 
 
 
ba67510
a8af817
f736b41
 
 
 
 
 
 
 
 
a8af817
ba67510
a8af817
 
 
 
ba67510
 
 
 
 
 
 
 
a8af817
 
 
 
 
 
 
ba67510
a8af817
 
 
 
 
 
f736b41
a8af817
ba67510
a8af817
ba67510
a8af817
ba67510
 
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba67510
a8af817
ba67510
a8af817
 
 
 
 
 
f736b41
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f736b41
 
 
a8af817
f736b41
 
 
 
 
 
 
 
 
 
 
ba67510
a8af817
 
 
 
 
ba67510
 
 
 
a8af817
 
 
 
 
 
ba67510
a8af817
 
 
 
 
 
ba67510
 
a8af817
ba67510
 
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba67510
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
ba67510
a8af817
 
 
ba67510
a8af817
 
ba67510
f736b41
 
 
 
 
 
ba67510
 
 
 
a8af817
 
 
 
 
ba67510
 
a8af817
 
 
 
ba67510
 
 
 
a8af817
ba67510
 
 
 
a8af817
 
 
 
ba67510
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba67510
a8af817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
# import libraries
import streamlit as st
import joblib
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split as tts
import evaluationer,models, null_value_handling
import auto_optimizer
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import SimpleImputer, IterativeImputer
import eda,outliers
# st.set_page_config(layout="wide")

st.set_page_config(
    page_title="LazyML App",
    page_icon="🧊",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://www.extremelycoolapp.com/help',
        'Report a bug': "https://www.extremelycoolapp.com/bug",
        'About': "# This is a header. This is an *extremely* cool app!"
    }
)



# Set the background image
background_image = """

<style>

[data-testid="stAppViewContainer"] > .main {

    background-image: url("https://w.wallhaven.cc/full/jx/wallhaven-jx7w25.png");

    background-size: 100vw 100vh;  # This sets the size to cover 100% of the viewport width and height

    background-position: center;  

    background-repeat: no-repeat;

}

</style>

"""

st.markdown(background_image, unsafe_allow_html=True)



# Title with Rainbow Transition Effect and Neon Glow
html_code = """

<div class="title-container">

  <h1 class="neon-text">

    LazyML

  </h1>

</div>



<style>

@keyframes rainbow-text-animation {

  0% { color: red; }

  16.67% { color: orange; }

  33.33% { color: yellow; }

  50% { color: green; }

  66.67% { color: blue; }

  83.33% { color: indigo; }

  100% { color: violet; }

}



.title-container {

  text-align: center;

  margin: 1em 0;

  padding-bottom: 10px;

  border-bottom: 4  px solid #fcdee9; /* Magenta underline */

}



.neon-text {

  font-family: Arial, sans-serif;

  font-size: 4em;

  margin: 0;

  animation: rainbow-text-animation 5s infinite linear;

  text-shadow: 0 0 5px rgba(255, 255, 255, 0.8),

               0 0 10px rgba(255, 255, 255, 0.7),

               0 0 20px rgba(255, 255, 255, 0.6),

               0 0 40px rgba(255, 0, 255, 0.6),

               0 0 80px rgba(255, 0, 255, 0.6),

               0 0 90px rgba(255, 0, 255, 0.6),

               0 0 100px rgba(255, 0, 255, 0.6),

               0 0 150px rgba(255, 0, 255, 0.6);

}

</style>

"""

st.markdown(html_code, unsafe_allow_html=True)
st.divider()



st.markdown(
    """

    <style>

    .success-message {

        font-family: Arial, sans-serif;

        font-size: 24px;

        color: green;

        text-align: left;

    }

    .unsuccess-message {

        font-family: Arial, sans-serif;

        font-size: 24px;

        color: red;

        text-align: left;

    }

    .prompt-message {

        font-family: Arial, sans-serif;

        font-size: 24px;

        color: #333;

        text-align: center;

    }

    .success-message2 {

        font-family: Arial, sans-serif;

        font-size: 18px;

        color: white;

        text-align: left;

    }

    .message-box {

        text-align: center;

        background-color: white;

        padding: 5px;

        border-radius: 10px;

        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);

        font-size: 24px;

        color: #333;

    }

    </style>

    """,
    unsafe_allow_html=True
)


# st.markdown('<p class="success-message">Train File uploaded successfully. ✅</p>', unsafe_allow_html=True)
# file uploader 
csv_upload = st.sidebar.file_uploader("Input CSV File for ML modelling", type=['csv'])

sep = st.sidebar.text_input("Input Seperator")
if (len(sep) ==0):
    sep = ","
csv_upload2 = st.sidebar.file_uploader("Input CSV File of Test Data Prediction",type = ["csv"])

if csv_upload is None:
    st.title("LazyML")

    st.header("Welcome to LazyML – your go-to app for effortless machine learning!")

    st.subheader("Overview")
    st.write("""

    LazyML is designed to make machine learning accessible to everyone, regardless of their technical expertise. Whether you're a seasoned data scientist or a complete beginner, LazyML takes the complexity out of building and deploying machine learning models.

    """)

    st.subheader("Key Features")
    st.write("""

    - **Automated Model Building:** Automatically preprocess your data, select the best algorithms, and fine-tune models with minimal effort.

    - **User-Friendly Interface:** Intuitive and easy-to-navigate interface that guides you through the entire machine learning workflow.

    - **Data Visualization:** Comprehensive visualization tools to help you understand your data and model performance.

    - **Customizable Pipelines:** Flexibility to customize data preprocessing, feature engineering, and model selection to suit your needs.

    - **Performance Metrics:** Detailed performance metrics and comparison reports for informed decision-making.

    - **Deployment Ready:** Easily deploy your models and start making predictions with just a few clicks.

    """)

    st.subheader("How It Works")
    st.write("""

    1. **Upload Your Data:** Start by uploading your dataset in CSV format.

    2. **Data Preprocessing:** LazyML automatically cleans and preprocesses your data, handling missing values, and scaling features as needed.

    3. **Model Selection:** The app evaluates multiple algorithms and selects the best performing ones for your specific data.

    4. **Model Training:** Selected models are trained and fine-tuned using cross-validation to ensure robustness.

    5. **Evaluation:** Get detailed reports on model performance with key metrics like accuracy, precision, recall, and F1 score.

    6. **Deployment:** Once satisfied with the model, deploy it and start making real-time predictions.

    """)


test = pd.DataFrame()
if csv_upload is not None:
    # read the uploaded file into dataframe
    df = pd.read_csv(csv_upload,sep = sep)

    # saving the dataframe to a CSV file
    df.to_csv('csv_upload.csv', index=False)
    st.markdown('<p class="success-message">Train File uploaded successfully. ✅</p>', unsafe_allow_html=True)
    
    if csv_upload2 is not None:
        test = pd.read_csv(csv_upload2,sep = sep)
        st.markdown('<p class="success-message">Test File uploaded successfully. ✅</p>', unsafe_allow_html=True)
        st.divider()
        id_col = st.selectbox("Select Column for Submission i.e, ID",test.columns)
        st.divider()
        submission_id = test[id_col]
        # st.write("Train File upl",submission_id)

        


    if len(test) >0:
        # saving the test dataframe to a CSV file
        test.to_csv('csv_upload_test.csv', index=False)
        
    
    st.markdown('<p class="message-box">Display Data</p>', unsafe_allow_html=True)
    st.write("")
    display_train_data = st.radio("Display Train Data",["Yes","No"],index = 1)
    if  display_train_data == "Yes":
        st.dataframe(df.head())

    if len(test) >0:
        display_test_data = st.radio("Display Test Data",["Yes","No"],index = 1)
        if display_test_data == "Yes":
            st.dataframe(test.head())

    st.divider()
    st.markdown('<div class="message-box success">Select Supervision Category</div>', unsafe_allow_html=True)
    if st.radio("",["Supervised","Un-Supervised"],index =0) == "Supervised":
        st.divider()

        st.write('<p class="success-message2">Select Target column</p>', unsafe_allow_html=True)
        selected_column = st.selectbox('', df.columns, index=(len(df.columns)-1))
        
        # Display the selected column
        st.write('You selected:', selected_column)
        st.divider()

        st.markdown('<div class="message-box success ">Perform EDA</div>', unsafe_allow_html=True)
        st.write("")
        if st.checkbox("Proceed to perform EDA"):
            eda.eda_analysis(df)
            st.write('<p class="success-message">EDA Performed proceed for Pre-processing</p>', unsafe_allow_html=True)
        st.divider()
        y = df[selected_column]
        
        if y.dtype == "O":
            st.markdown('<p class="unsuccess-message">⚠️⚠️⚠️ Target Column is Object Type ⚠️⚠️⚠️</p>', unsafe_allow_html=True)
            
            if st.checkbox("Proceed for Label Encoding "): 
                from sklearn.preprocessing import LabelEncoder
                le = LabelEncoder()
                y= pd.Series(le.fit_transform(y))
                st.markdown('<p class="success-message">Label Encoding Completed ✅</p>', unsafe_allow_html=True)
        if st.checkbox("Display Target Column"):
                st.dataframe(y.head())

        st.divider()
        st.markdown('<div class="message-box success">Target column Transformation</div>', unsafe_allow_html=True)
        select_target_trans = st.radio("",["Yes","No"],index = 1)
        if  select_target_trans == "Yes":
            selected_transformation = st.selectbox("Select Transformation method",["Log Transformation","Power Transformation"])
            if selected_transformation == "Log Transformation":
                if y.min() <=0:
                    st.write("Values in target columns are zeroes or negative, please select power transformation")
                else:    
                    log_selected_transformation = st.selectbox("Select Logarithmic method",["Natural Log base(e)","Log base 10","Log base (2)"])
                    if log_selected_transformation == "Natural Log base(e)":
                        y = np.log(y)
                        st.write("Log base (e) Transformation Completed ✅")
                    elif log_selected_transformation == "Log base 10":
                        y = np.log10(y)
                        st.write("Log base 10 Transformation Completed ✅")
                    elif log_selected_transformation == "Log base (2)":
                        y = np.log2(y)
                        st.write("Log base 2 Transformation Completed ✅")
            elif selected_transformation == "Power Transformation":
                power_selected_transformation = st.selectbox("Select Power Transformation method",["Square Root","Other"])
                if power_selected_transformation == "Square Root":
                    y = np.sqrt(y)
                    st.write("Square root Transformation Completed ✅")
                elif power_selected_transformation == "Other":
                    power_value = st.number_input("Enter Power Value",value=3)
                    y = y**(1/power_value)
                    st.write(f"power root of {power_value} Transformation Completed ✅")       
        
            if st.radio("Display Target Column after Transformation",["Yes","No"],index =1) == "Yes":
                st.dataframe(y.head())



        X = df.drop(columns = selected_column)

        if st.radio("Display X-Train Data",["Yes","No"],index =1) == "Yes":
            st.dataframe(X.head())
        st.divider()

        # st.checkbox()     
        st.markdown('<div class="message-box success">Check for duplicate Values</div>', unsafe_allow_html=True)
        if st.radio("  ",["Yes","No"],index = 1) == "Yes":    
            len_duplicates = len(X[X.duplicated()])
            if len_duplicates >0:
                st.write(f"There are {len_duplicates} duplicate values in Train")
                if st.checkbox("Show Duplicate values"):
                    st.dataframe(X[X.duplicated()])
                if st.selectbox("Drop Duplicate values",["Yes","No"],index = 1) == "Yes":
                    X = X.drop_duplicates()
                    st.write("Duplicate values removed ✅")
            else:
                st.write("There are no duplicate values in Train")
        st.divider()        
        # dropping not important columns
        if len(X.columns) >1:
            st.markdown('<div class="message-box success">Drop Unimportant Columns</div>', unsafe_allow_html=True)
            if st.radio("   ",["Yes","No"],index = 1) == "Yes":
                selected_drop_column = st.multiselect('Select columns to be dropped', X.columns)
                X = X.drop(columns = selected_drop_column)
                if len(test) >0:
                    test = test.drop(columns = selected_drop_column)
                st.write("Un-Important column(s) Deleted ✅")
                st.dataframe(X.head())

        st.divider()
        num_cols = X.select_dtypes(exclude = "O").columns 
        cat_cols = X.select_dtypes(include = "O").columns
        st.write("Numerical Columns in Train Data: ", tuple(num_cols))
        st.write("Categorical Columns in Train Data: ", tuple(cat_cols))
        if st.sidebar.button("Clear Evaluation DataFrame"):
            evaluationer.reg_evaluation_df = evaluationer.reg_evaluation_df.drop(index =evaluationer.reg_evaluation_df.index)
            evaluationer.classification_evaluation_df = evaluationer.classification_evaluation_df.drop(index =evaluationer.reg_evaluation_df.index)
        st.divider()   
        # markdown
        st.markdown('<div class="message-box success">Select method for ML modelling</div>', unsafe_allow_html = True)
        if st.radio("     ", ["Manual","Auto Optimized"],index = 0) == "Auto Optimized":
            st.divider()
            ml_cat_ao = st.radio("Select Machine Learning Category",["Regression","Classification"],index =0)

            if ml_cat_ao =="Regression":
                eva = "reg"
                st.write("Select ML algorithm")
                reg_model_name = st.selectbox("select model",models.Regression_models.index)  
                reg_model = models.Regression_models.loc[reg_model_name].values[0]
                auto_optimizer.Auto_optimizer(X,y,eva,reg_model,reg_model_name)

            elif ml_cat_ao =="Classification":
                eva = "class"
                st.write("Select ML algorithm")
                class_model_name = st.selectbox("select model",models.Classification_models.index)
                class_model = models.Classification_models.loc[class_model_name].values[0]
                auto_optimizer.Auto_optimizer(X,y,eva,class_model,class_model_name)
           
            
        else:
            st.divider()
            if X.isnull().sum().sum() >0 :
                
                st.markdown('<p class="unsuccess-message">⚠️⚠️⚠️ There are missing values in Train Data ⚠️⚠️⚠️</p>', unsafe_allow_html=True)

                if st.selectbox("Drop null values or Impute",["Drop Null Values","Impute Null Values"],index = 1) == "Drop Null Values":

                    X = X.dropna()
                    if len(test) >0:
                        st.write("⚠️⚠️⚠️ If choosing drop values, test dataset will also drop those values please choose missing value imputation method befittingly.⚠️⚠️⚠️ ")
                        test = test.dropna()

                clean_num_nvh_df = pd.DataFrame()
                if X[num_cols].isnull().sum().sum() >0:
                    st.write("Numerical Columns with Percentage of Null Values: ")
                    num_cols_nvh = X[num_cols].isnull().sum()[X[num_cols].isnull().sum()>0].index
                    st.dataframe(round(X[num_cols].isnull().sum()[X[num_cols].isnull().sum()>0]/len(X)*100,2))
                    dict_1= {}
                    for nvh_method in null_value_handling.null_value_handling_method_num_cols :
                        
                        selected_nvh_num_cols = st.multiselect(f'method:- \"{nvh_method}\" for Numerical columns', num_cols_nvh,)
                        dict_1[nvh_method] = selected_nvh_num_cols

                        num_cols_nvh = set(num_cols_nvh) - set(selected_nvh_num_cols)
                        if len(num_cols_nvh) ==0:
                            break
                    num_nvh_df = pd.DataFrame(data=dict_1.values(), index=dict_1.keys())

                    clean_num_nvh_df = num_nvh_df.T[num_nvh_df.T.count()[num_nvh_df.T.count()>0].index]
                    
                    st.write("Methods for Numerical columns null value handling",clean_num_nvh_df )

                if len(test) >0:
                    if test[num_cols].isnull().sum().sum() >0:    
                        test_num_cols_nvh = test[num_cols].isnull().sum()[test[num_cols].isnull().sum()>0].index
                        st.write("Columns with Null Value in Test",test_num_cols_nvh)
                        test[num_cols] = IterativeImputer(max_iter = 200,random_state= 42).fit_transform(test[num_cols])
                

                clean_num_nvh_df_cat = pd.DataFrame()
                
                if X[cat_cols].isnull().sum().sum() >0:
                    st.divider()
                    st.write("Categorical Columns with Percentage of Null Values: ")
                    cat_cols_nvh = X[cat_cols].isnull().sum()[X[cat_cols].isnull().sum()>0].index
                    st.dataframe(round(X[cat_cols].isnull().sum()[X[cat_cols].isnull().sum()>0]/len(X)*100,2))

                    dict_2= {}
                    for nvh_method in null_value_handling.null_value_handling_method_cat_cols :
                        
                        
                        selected_nvh_num_cols = st.multiselect(f'method:- \"{nvh_method}\" for Numerical columns', cat_cols_nvh,)
                        dict_2[nvh_method] = selected_nvh_num_cols

                        cat_cols_nvh = set(cat_cols_nvh) - set(selected_nvh_num_cols)
                        if len(cat_cols_nvh) ==0:
                            break
                    num_nvh_df_cat = pd.DataFrame(data=dict_2.values(), index=dict_2.keys())
                    clean_num_nvh_df_cat = num_nvh_df_cat.T
                    st.write("Methods for Categorical columns null value handling",[clean_num_nvh_df_cat])  

                if len(test) >0:
                    if test[cat_cols].isnull().sum().sum() >0:    
                        test_num_cols_nvh_cat = test[cat_cols].isnull().sum()[test[cat_cols].isnull().sum()>0].index
                        st.write("sdgs",test_num_cols_nvh_cat)
                        test[cat_cols] = SimpleImputer(strategy = "most_frequent").fit_transform(test[cat_cols])

                
                try:
                    null_value_handling.null_handling(X,clean_num_nvh_df,clean_num_nvh_df_cat)
                    st.write("X Data after Null value handling", X.head())

                    new_df = pd.concat([X,y[X.index]],axis = 1)
                    
                    csv = new_df.to_csv(index = False)
                    
                    st.markdown('<p class="success-message">Null Values Handled Successfully. ✅</p>', unsafe_allow_html=True)
                    if st.checkbox("Download Null Value Handled DataFrame as CSV File ? "): 
                        st.download_button(label="Download Null Value Handled CSV File",data=csv,file_name='NVH_DataFrame.csv',mime='text/csv')
                    st.divider()
                except:
                    st.markdown('<p class="unsuccess-message">⚠️⚠️⚠️ Categorical column null value not handled ⚠️⚠️⚠️</p>', unsafe_allow_html=True)
                    
                
            ord_enc_cols = []

            if len(cat_cols) == 0:
                st.write("No Categorical Columns in Train")
            else:
                st.markdown('<div class="message-box success">Features Encoding</div>', unsafe_allow_html=True)
                st.markdown('<p class="unsuccess-message">There are Object type Features in Train Data ⚠️</p>', unsafe_allow_html=True)
                st.markdown('<p class="success-message2">Select Columns for Ordinal Encoding</p>', unsafe_allow_html=True)
                
                for column in cat_cols:

                    selected = st.checkbox(column)
                    if selected:
                        st.write(f"No. of Unique value in {column} column are", X[column].nunique())
                        ord_enc_cols.append(column)
            st.divider()
            ohe_enc_cols = set(cat_cols) -set(ord_enc_cols)
            ohe_enc_cols = list(ohe_enc_cols)
            if len(ord_enc_cols)>0:
                st.write("ordinal encoded columns" ,tuple(ord_enc_cols))
            if len(ohe_enc_cols)>0:
                st.write("one hot encoded columns" ,tuple(ohe_enc_cols))
            st.divider()
            st.markdown('<div class="message-box success">Proceed for Encoding</div>', unsafe_allow_html=True)
            if len(ord_enc_cols)>0:
                
                if st.checkbox("Proceed for Ordinal Encoding"):
                    ordinal_order_vals = []

                    for column in ord_enc_cols:
                        unique_vals = X[column].unique()
                        # st.write(f"No. of Unique value in {column} column are", len(unique_vals))
                                        
                        ordered_unique_vals = st.multiselect("Select values in order for Ordinal Encoding",unique_vals,unique_vals)
                        ordinal_order_vals.append(ordered_unique_vals)
                    
                    st.write("order of values for Ordinal Encoding",tuple(ordinal_order_vals))   
                    # import ordinal encoder
                    from sklearn.preprocessing import OrdinalEncoder
                    ord = OrdinalEncoder(categories=ordinal_order_vals,handle_unknown= "use_encoded_value",unknown_value = -1 )
                    X[ord_enc_cols] = ord.fit_transform(X[ord_enc_cols])
                    if len(test) >0:
                        test[ord_enc_cols] = ord.transform(test[ord_enc_cols])
                    st.write("DataFrame after Ordinal Encoding",X.head())
                    st.write("Ordinal Encoding Completed ✅")

            if len(ohe_enc_cols)>0:
                if st.checkbox("Proceed for OneHotEncoding "):    # import one hot encoder
                    from sklearn.preprocessing import OneHotEncoder
                    ohe = OneHotEncoder(sparse_output = False,handle_unknown = "ignore")
                    pd.options.mode.chained_assignment = None
                    X.loc[:, ohe.get_feature_names_out()] = ohe.fit_transform(X[ohe_enc_cols])
                    X.drop(columns = ohe_enc_cols,inplace = True)
                    if len(test) >0:
                        test.loc[:, ohe.get_feature_names_out()] = ohe.transform(test[ohe_enc_cols])
                        test.drop(columns = ohe_enc_cols,inplace = True)

                    pd.options.mode.chained_assignment = 'warn'

                    st.write("DataFrame after One Hot Encoding",X.head())
                    st.write("OneHot Encoding Completed ✅")
            st.divider()
            new_df = pd.concat([X,y],axis = 1)
            
            csv = new_df.to_csv(index = False)
            if st.checkbox("Download Encoded DataFrame as CSV File ? "): 
                st.download_button(label="Download Ordinal Encoded CSV File",data=csv,file_name='Encoded_DataFrame.csv',mime='text/csv')

            st.divider()
            st.markdown('<div class="message-box success">Outlier Detection</div>', unsafe_allow_html=True)
            st.write("")
            if st.button("Click to check outliers"):
                outlier,out_index = outliers.detect_outliers(new_df,num_cols)
                st.write("outlier",outlier)
            st.divider()
            st.markdown('<div class="message-box success">Modelling</div>', unsafe_allow_html=True)
            st.write("")
            st.markdown('<p class="success-message">Select Train Validation Split Method</p>', unsafe_allow_html=True)
            if st.radio("",["Train_Test_split","KFoldCV, Default (CV = 5)"], index = 0)== "Train_Test_split":
                ttsmethod = "Train_Test_split"
            else:
                ttsmethod = "KFoldCV"
            st.write('You selected:', ttsmethod)
            if ttsmethod == "Train_Test_split":
                random_state = st.number_input("Enter Random_state",max_value=100,min_value=1,value=42) 
                test_size = st.number_input("Enter test_size",max_value=0.99, min_value = 0.01,value =0.2)  
                X_train,X_Val,y_train,y_val = tts(X,y[X.index],random_state = random_state,test_size = test_size)
                
                st.write('X-Training Data shape:', X_train.shape)
                st.write('X-Validation Data shape:', X_Val.shape)
            st.divider()
            st.markdown('<p class="success-message2">Select Machine Learning Category</p>', unsafe_allow_html=True)
            ml_cat = st.radio("___",options=["Regression","Classification"],index =0)
            st.divider()
            if ml_cat =="Regression":
                st.markdown('<p class="success-message2">Select Error Evaluation Method</p>', unsafe_allow_html=True)
                method_name_selector = st.selectbox("       ",evaluationer.method_df.index,index = 0)

                st.divider()

                method = evaluationer.method_df.loc[method_name_selector].values[0]
                reg_algorithm = []
                selected_options = []
                st.markdown('<div class="message-box success">Select ML Model(s)</div>', unsafe_allow_html=True)
                for option in models.Regression_models.index:
                    selected = st.checkbox(option)
                    if selected:
                        selected_options.append(option)

                        param = models.Regression_models.loc[option][0].get_params()
                        Temp_parameter = pd.DataFrame(data=param.values(), index=param.keys())                    
                        Temp_parameter_transposed = Temp_parameter.T
                        parameter = pd.DataFrame(data=param.values(), index=param.keys())
                        def is_boolean(val):
                            return isinstance(val, bool)

                        # Apply the function to the DataFrame column and create a new column with the resuSlts
                        bool_cols= parameter[parameter[0].apply(is_boolean)].index
                        param_transposed = parameter.T
                        # st.write("hrweurgesj",param_transposed.loc[:, bool_cols])
                        # st.write("bool_cols",bool_cols)
                        remaining_cols = set(param_transposed.columns) - set(bool_cols)
                        remaining_cols = tuple(remaining_cols)
                        # st.write("rem_Cols",remaining_cols)

                        for col in remaining_cols:    
                            param_transposed[col] = pd.to_numeric(param_transposed[col],errors="ignore")
                        cat_cols = param_transposed.select_dtypes(include = ["O"]).T.index.to_list()
                        num_cols = set(remaining_cols) - set(cat_cols)
                        cat_cols = set(cat_cols) - set(bool_cols)
                        num_cols = tuple(num_cols)
                        # st.write("sdsafdsd",num_cols)
                        for i in num_cols:
                            param_transposed[i] = st.number_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
                        for i in cat_cols:
                            param_transposed[i] = st.text_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
                        for i in bool_cols:
                            st.write("default value to insert",Temp_parameter_transposed[i].values[0])
                            param_transposed[i] = st.selectbox(f"input \"{i}\" value \n{option}",[False, True], index=Temp_parameter_transposed[i].values[0])
                            
                        inv_param = param_transposed.T
                        new_param = inv_param.dropna().loc[:,0].to_dict()
                        # st.write("asad",new_param)
                        models.Regression_models.loc[option][0].set_params(**new_param)
                        a =  models.Regression_models.loc[option][0].get_params()
                        reg_algorithm.append(models.Regression_models.loc[option][0])
                if st.button("Train Regression Model"):
                    for algorithm in reg_algorithm:
                        evaluationer.evaluation(f"{algorithm} baseline",X_train,X_Val,y_train,y_val,algorithm,method,"reg")
                    st.write("Regression Model Trained Successfully",evaluationer.reg_evaluation_df)
                if len(test)>0:
                    if st.radio("Predict",["Yes","No"],index = 1) =="Yes":

                        if len(evaluationer.reg_evaluation_df) >0:
                            a = st.number_input("select index of best algorithm for test prediction",min_value = 0,max_value =len(evaluationer.reg_evaluation_df) -1, value = len(evaluationer.reg_evaluation_df) -1)
                            
                            test_prediction = evaluationer.reg_evaluation_df.loc[a,"model"].predict(test)
                            if  select_target_trans == "Yes":
                                if selected_transformation == "Log Transformation":
                                    if log_selected_transformation == "Natural Log base(e)":
                                        test_prediction = np.exp(test_prediction)
                                        st.write("Natural Log base(e) Inverse Transformation Completed ✅")
                                    elif log_selected_transformation == "Log base 10":
                                        test_prediction = np.power(10,test_prediction)
                                        st.write("Log base 10 Inverse Transformation Completed ✅")
                                    elif log_selected_transformation == "Log base (2)":
                                        test_prediction = np.power(2,test_prediction)
                                        st.write("Log base 2 Inverse Transformation Completed ✅")
                                elif selected_transformation == "Power Transformation":
                                    if power_selected_transformation == "Square Root":
                                        test_prediction = np.power(test_prediction,2)
                                        st.write("Square root Inverse Transformation Completed ✅")
                                    elif power_selected_transformation == "Other":
                                        test_prediction = test_prediction**(power_value)
                                        st.write(f"power root of {power_value} Inverse Transformation Completed ✅")
                            submission_file = pd.DataFrame(index = [submission_id],data = test_prediction,columns = [selected_column])
                            st.write("Sample of Prediction File",submission_file.head())
                            csv_prediction = submission_file.to_csv()
                            if st.radio("Download Prediction File as CSV File ? ",["Yes","No"],index = 1) == "Yes": 
                                st.download_button(label="Download Prediction CSV File",data=csv_prediction,file_name='prediction.csv',mime='text/csv')

            

                
            if ml_cat =="Classification":
                
                
                
                cla_algorithm = []
                selected_options = []
                st.markdown('<div class="message-box success">Select ML Model(s)</div>', unsafe_allow_html=True)
                for option in models.Classification_models.index:
                    selected = st.checkbox(option)
                    if selected:
                        selected_options.append(option)
                        
                        param = models.Classification_models.loc[option][0].get_params()
                                
                        
                        parameter = pd.DataFrame(data=param.values(), index=param.keys())
                        Temp_parameter = parameter.copy()
                        Temp_parameter_transposed = (Temp_parameter.T).copy()    
                        def is_boolean(val):
                            return isinstance(val, bool)

                        # Apply the function to the DataFrame column and create a new column with the resuSlts
                        bool_cols= parameter[parameter[0].apply(is_boolean)].index
                        param_transposed = parameter.T
                        st.write("bool_cols",bool_cols)
                        remaining_cols = set(param_transposed.columns) - set(bool_cols)
                        remaining_cols = tuple(remaining_cols)
                        st.write("rem_Cols",remaining_cols)

                        for col in remaining_cols:    
                            param_transposed[col] = pd.to_numeric(param_transposed[col],errors="ignore")
                        cat_cols = param_transposed.select_dtypes(include = ["O"]).T.index.to_list()
                        num_cols = set(remaining_cols) - set(cat_cols)
                        num_cols = tuple(num_cols)
                        st.write("sdsafdsd",num_cols)
                        for i in num_cols:
                            param_transposed[i] = st.number_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
                        for i in cat_cols:
                            param_transposed[i] = st.text_input(f"input \"{i}\" value \n{option}",value = parameter.T[i].values[0])
                        for i in bool_cols:
                            st.write("default value to insert",Temp_parameter_transposed[i].values[0])
                            param_transposed[i] = st.selectbox(f"input \"{i}\" value \n{option}",[False,True], index=Temp_parameter_transposed[i].values[0])
                        inv_param = param_transposed.T
                        new_param = inv_param.dropna().loc[:,0].to_dict()
                        st.write("asad",new_param)
                        models.Classification_models.loc[option][0].set_params(**new_param)
                        a =  models.Classification_models.loc[option][0].get_params()
                        cla_algorithm.append(models.Classification_models.loc[option][0])
                # st.write("sada",reg_algorithm/)
                if st.button("Train Regression Model"):
                    method = None
                    for algorithm in cla_algorithm:
                        evaluationer.evaluation(f"{algorithm} baseline",X_train,X_Val,y_train,y_val,algorithm,method,eva ="class")
                    st.write("Regression Model Trained Successfully",evaluationer.classification_evaluation_df)

                if len(test)>0:
                    if st.radio("Predict",["Yes","No"],index = 1) =="Yes":
                        if len(evaluationer.classification_evaluation_df) >0:
                            a = st.number_input("select index of best algorithm for test prediction",min_value = 0,max_value =len(evaluationer.classification_evaluation_df) -1, value = len(evaluationer.classification_evaluation_df) -1)
                            
                            test_prediction = evaluationer.classification_evaluation_df.loc[a,"model"].predict(test)    
                            if  select_target_trans == "Yes":
                                if selected_transformation == "Log Transformation":
                                    if log_selected_transformation == "Natural Log base(e)":
                                        test_prediction = np.exp(test_prediction)
                                        st.write("Natural Log base(e) Inverse Transformation Completed ✅")
                                    elif log_selected_transformation == "Log base 10":
                                        test_prediction = np.power(10,test_prediction)
                                        st.write("Log base 10 Inverse Transformation Completed ✅")
                                    elif log_selected_transformation == "Log base (2)":
                                        test_prediction = np.power(2,test_prediction)
                                        st.write("Log base 2 Inverse Transformation Completed ✅")
                                elif selected_transformation == "Power Transformation":
                                    if power_selected_transformation == "Square Root":
                                        test_prediction = np.power(test_prediction,2)
                                        st.write("Square root Inverse Transformation Completed ✅")
                                    elif power_selected_transformation == "Other":
                                        test_prediction = test_prediction**(power_value)
                                        st.write(f"power root of {power_value} Inverse Transformation Completed ✅")
                          
                            submission_file = pd.DataFrame(index = [submission_id],data = test_prediction,columns = [selected_column])
                            st.write("Sample of Prediction File",submission_file.head())
                            csv_prediction = submission_file.to_csv()
                            if st.radio("Download Prediction File as CSV File ? ",["Yes","No"],index = 1) == "Yes": 
                                st.download_button(label="Download Prediction CSV File",data=csv_prediction,file_name='prediction.csv',mime='text/csv')