File size: 9,606 Bytes
ba67510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, Lasso, ElasticNet
from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, GradientBoostingRegressor, HistGradientBoostingRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
from xgboost import XGBRegressor, XGBRFRegressor
from sklearn.neural_network import MLPRegressor
from lightgbm import LGBMRegressor
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
import streamlit as st
import evaluationer

from sklearn.metrics import root_mean_squared_error

from sklearn.linear_model import LogisticRegression, SGDClassifier, RidgeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, HistGradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from xgboost import XGBClassifier, XGBRFClassifier
from sklearn.neural_network import MLPClassifier
from lightgbm import LGBMClassifier
from sklearn.naive_bayes import MultinomialNB, CategoricalNB

param_grids_class = {
    "Logistic Regression": {
        'penalty': ['l1', 'l2', 'elasticnet', 'none'],
        'C': [0.01, 0.1, 1, 10],
        'solver': ['lbfgs', 'liblinear', 'saga']
    },
    
    "SGD Classifier": {
        'loss': ['hinge', 'log', 'modified_huber', 'squared_hinge'],
        'penalty': ['l2', 'l1', 'elasticnet'],
        'alpha': [0.0001, 0.001, 0.01],
        'max_iter': [1000, 5000, 10000]
    },
    
    "Ridge Classifier": {
        'alpha': [0.1, 1, 10, 100]
    },
    
    "Random Forest Classifier": {
        'n_estimators': [100, 200, 300],
        'max_depth': [None, 10, 20, 30],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4]
    },
    
    "AdaBoost Classifier": {
        'n_estimators': [50, 100, 200],
        'learning_rate': [0.01, 0.1, 1]
    },
    
    "Gradient Boosting Classifier": {
        'n_estimators': [100, 200, 300],
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [3, 5, 7]
    },
    
    "Hist Gradient Boosting Classifier": {
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [None, 10, 20],
        'min_samples_leaf': [20, 50, 100]
    },
    
    "K Neighbors Classifier": {
        'n_neighbors': [3, 5, 7],
        'weights': ['uniform', 'distance'],
        'metric': ['euclidean', 'manhattan']
    },
    
    "Decision Tree Classifier": {
        'max_depth': [None, 10, 20, 30],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4]
    },
    
    "SVC": {
        'C': [0.1, 1, 10],
        'kernel': ['linear', 'poly', 'rbf'],
        'degree': [3, 4, 5],
        'gamma': ['scale', 'auto']
    },
    
    "XGB Classifier": {
        'n_estimators': [100, 200, 300],
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [3, 5, 7]
    },
    
    "XGBRF Classifier": {
        'n_estimators': [100, 200, 300],
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [3, 5, 7]
    },
    
    "MLP Classifier": {
        'hidden_layer_sizes': [(50,), (100,), (50, 50)],
        'activation': ['tanh', 'relu'],
        'solver': ['adam', 'sgd'],
        'alpha': [0.0001, 0.001, 0.01],
        'learning_rate': ['constant', 'adaptive']
    },
    
    "LGBM Classifier": {
        'n_estimators': [100, 200, 300],
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [-1, 10, 20]
    },
    
    "Multinomial Naive Bayes": {
        'alpha': [0.1, 0.5, 1.0]
    },
    
    "Categorical Naive Bayes": {
        'alpha': [0.1, 0.5, 1.0]
    }
}

param_grids_reg = {
    "Linear Regression": {},
    
    "SGD Regressor": {
        'loss': ['squared_loss', 'huber'],
        'penalty': ['l2', 'l1', 'elasticnet'],
        'alpha': [0.0001, 0.001, 0.01],
        'max_iter': [1000, 5000, 10000]
    },
    
    "Ridge Regressor": {
        'alpha': [0.1, 1, 10, 100],
        'solver': ['auto', 'svd', 'cholesky', 'lsqr']
    },
    
    "Lasso Regressor": {
        'alpha': [0.1, 1, 10, 100]
    },
    
    "ElasticNet Regressor": {
        'alpha': [0.1, 1, 10, 100],
        'l1_ratio': [0.1, 0.5, 0.9]
    },
    
    "Random Forest Regressor": {
        'n_estimators': [100, 200, 300],
        'max_depth': [None, 10, 20, 30],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4]
    },
    
    "AdaBoost Regressor": {
        'n_estimators': [50, 100, 200],
        'learning_rate': [0.01, 0.1, 1]
    },
    
    "Gradient Boosting Regressor": {
        'n_estimators': [100, 200, 300],
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [3, 5, 7]
    },
    
    "Hist Gradient Boosting Regressor": {
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [None, 10, 20],
        'min_samples_leaf': [20, 50, 100]
    },
    
    "K Neighbors Regressor": {
        'n_neighbors': [3, 5, 7],
        'weights': ['uniform', 'distance'],
        'metric': ['euclidean', 'manhattan']
    },
    
    "Decision Tree Regressor": {
        'max_depth': [None, 10, 20, 30],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4]
    },
    
    "SVR": {
        'C': [0.1, 1, 10],
        'kernel': ['linear', 'poly', 'rbf'],
        'degree': [3, 4, 5],
        'gamma': ['scale', 'auto']
    },
    
    "XGB Regressor": {
        'n_estimators': [100, 200, 300],
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [3, 5, 7]
    },
    
    "XGBRF Regressor": {
        'n_estimators': [100, 200, 300],
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [3, 5, 7]
    },
    
    "MLP Regressor": {
        'hidden_layer_sizes': [(50,), (100,), (50, 50)],
        'activation': ['tanh', 'relu'],
        'solver': ['adam', 'sgd'],
        'alpha': [0.0001, 0.001, 0.01],
        'learning_rate': ['constant', 'adaptive']
    },
    
    "LGBM Regressor": {
        'n_estimators': [100, 200, 300],
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [-1, 10, 20]
    },
    
    "Gaussian Naive Bayes": {
        'var_smoothing': [1e-9, 1e-8, 1e-7]
    }
}

# Define the regressors
regressors = {
    "Linear Regression": LinearRegression(),
    "SGD Regressor": SGDRegressor(),
    "Ridge Regressor": Ridge(),
    "Lasso Regressor": Lasso(),
    "ElasticNet Regressor": ElasticNet(),
    "Random Forest Regressor": RandomForestRegressor(),
    "AdaBoost Regressor": AdaBoostRegressor(),
    "Gradient Boosting Regressor": GradientBoostingRegressor(),
    "Hist Gradient Boosting Regressor": HistGradientBoostingRegressor(),
    "K Neighbors Regressor": KNeighborsRegressor(),
    "Decision Tree Regressor": DecisionTreeRegressor(),
    "SVR": SVR(),
    "XGB Regressor": XGBRegressor(),
    "XGBRF Regressor": XGBRFRegressor(),
    "MLP Regressor": MLPRegressor(),
    "LGBM Regressor": LGBMRegressor(),
    "Gaussian Naive Bayes": GaussianNB()
}

classifiers = {
    "Logistic Regression": LogisticRegression(),
    "SGD Classifier": SGDClassifier(),
    "Ridge Classifier": RidgeClassifier(),
    "Random Forest Classifier": RandomForestClassifier(),
    "AdaBoost Classifier": AdaBoostClassifier(),
    "Gradient Boosting Classifier": GradientBoostingClassifier(),
    "Hist Gradient Boosting Classifier": HistGradientBoostingClassifier(),
    "K Neighbors Classifier": KNeighborsClassifier(),
    "Decision Tree Classifier": DecisionTreeClassifier(),
    "SVC": SVC(),
    "XGB Classifier": XGBClassifier(),
    "XGBRF Classifier": XGBRFClassifier(),
    "MLP Classifier": MLPClassifier(),
    "LGBM Classifier": LGBMClassifier(),
    "Multinomial Naive Bayes": MultinomialNB(),
    "Categorical Naive Bayes": CategoricalNB()
}
def perform_grid_search(model,model_name,X_train,X_test,y_train,y_test,eva):
    if eva == "reg":
        regressor = regressors[model_name]
    
        param_grid_reg = param_grids_reg[model_name]

        grid_search = GridSearchCV(estimator=regressor, param_grid=param_grid_reg, cv=5, scoring='neg_mean_squared_error')
        grid_search.fit(X_train,y_train)
        st.write(f"Best Parameters for {model_name}: {grid_search.best_params_}")
        st.write(f"Best Score for {model_name}: {grid_search.best_score_}")
        best_model = grid_search.best_estimator_
        y_pred = best_model.predict(X_test)
        evaluationer.evaluation("best hyperparams",X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva)
    elif eva == "class":
        classifier = classifiers[model_name]
        param_grid_class = param_grids_class[model_name]

        grid_search = GridSearchCV(estimator=classifier, param_grid=param_grid_class, cv=5, scoring='accuracy')
        grid_search.fit(X_train,y_train)
        st.write(f"Best Parameters for {model_name}: {grid_search.best_params_}")
        st.write(f"Best Score for {model_name}: {grid_search.best_score_}")
        best_model = grid_search.best_estimator_
        y_pred = best_model.predict(X_test)
        evaluationer.evaluation("best hyperparams",X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva)