File size: 11,951 Bytes
a8af817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats.mstats import winsorize
from sklearn.preprocessing import StandardScaler,MinMaxScaler
from sklearn.metrics import root_mean_squared_error
from scipy.stats import yeojohnson
import evaluationer
from sklearn.model_selection import train_test_split as tts
def detect_outliers(df,num_cols):
global outlier_df,zscore_cols,outlier_indexes,iqr_cols
outlier_df = pd.DataFrame({"method" :[],"columns name":[],"upper limit":[],
"lower limit":[],"no of Rows":[],"percentage outlier":[]})
if type(num_cols) == list:
if len(num_cols)!=0:
num_cols = num_cols
else:
num_cols = df.select_dtypes(exclude = "object").columns.tolist()
else:
if num_cols.tolist() != None:
num_cols = num_cols
else:
num_cols = df.select_dtypes(exclude = "object").columns.tolist()
zscore_cols = []
iqr_cols = []
outlier_indexes =[]
for col in num_cols:
skewness = df[col].skew()
if -0.5 <= skewness <= 0.5:
method = "zscore"
zscore_cols.append(col)
else:
method = "iqr"
iqr_cols.append(col)
if len(zscore_cols) >0:
for col in zscore_cols:
mean = df[col].mean()
std = df[col].std()
ul = mean + (3*std)
ll = mean - (3*std)
mask = (df[col] < ll) | (df[col] > ul)
temp = df[mask]
Zscore_index = temp.index.tolist()
outlier_indexes.extend(Zscore_index)
if len(temp)>0:
temp_df = pd.DataFrame({"method" : ["ZScore"],
"columns name" : [col],
"upper limit" : [round(ul,2)],
"lower limit" :[ round(ll,2)],
"no of Rows" : [len(temp)],
"percentage outlier" : [round(len(temp)*100/len(df),2)]})
outlier_df = pd.concat([outlier_df,temp_df]).reset_index(drop = True)
else:
print("No columns for Zscore method")
if len(iqr_cols) >0:
for col in iqr_cols:
q3 = df[col].quantile(.75)
q1 = df[col].quantile(.25)
IQR = q3 -q1
ul = q3 + 1.5*IQR
ll = q1 - 1.5*IQR
mask = (df[col] < ll) | (df[col] > ul)
temp = df[mask]
IQR_index = temp.index.tolist()
outlier_indexes.extend(IQR_index)
if len(temp)>0:
list(outlier_indexes).append(list(IQR_index))
temp_df1 = pd.DataFrame({"method" : ["IQR"],
"columns name" : [col],
"upper limit" : [round(ul,2)],
"lower limit" : [round(ll,2)],
"no of Rows": [len(temp)],
"percentage outlier" : [round((len(temp)*100/len(df)),2)]
})
outlier_df = pd.concat([outlier_df,temp_df1]).reset_index(drop = True)
else:
print("No columns for IQR method")
outlier_indexes = list(set(outlier_indexes))
return outlier_df,outlier_indexes
def outlier_handling(df,y,model,outlier_indexes = [],outlier_cols = None ,method = root_mean_squared_error,test_size = 0.2, random_state = 42,eva = "reg"):
num_col = df.select_dtypes(exclude = "O").columns
global outliers_dropped_df,log_transformed_df,sqrt_transformed_df,yeo_johnson_transformed_df,rank_transformed_df
global std_scaler_df,winsorize_transformed_df,inverse_log_transformed_winsorize_df,inverse_sqrt_transformed_winsorize_df,minmaxscaler_df
if eva == "reg":
if len(outlier_indexes) ==0:
print("no outlier indexes passed")
outliers_dropped_df = df.copy()
else:
outliers_dropped_df = df.drop(index =outlier_indexes)
if outlier_cols != None:
if df[outlier_cols][df[outlier_cols] <0].sum().sum() == 0:
log_transformed_df = df.copy()
log_transformed_df[outlier_cols] = np.log(log_transformed_df[outlier_cols] + 1e-5)
sqrt_transformed_df = df.copy()
sqrt_transformed_df[outlier_cols] = np.sqrt(sqrt_transformed_df[outlier_cols] + 1e-5)
inverse_log_transformed_winsorize_df = log_transformed_df.copy()
inverse_sqrt_transformed_winsorize_df = sqrt_transformed_df.copy()
for column in outlier_cols:
inverse_log_transformed_winsorize_df[column] = np.exp(winsorize(inverse_log_transformed_winsorize_df[column], limits=[0.05, 0.05]))
inverse_sqrt_transformed_winsorize_df[column] = (winsorize(inverse_sqrt_transformed_winsorize_df[column], limits=[0.05, 0.05]))**2
else:
print("df have values less than zero")
std_scaler_df = df.copy()
std_scaler_df[outlier_cols] = StandardScaler().fit_transform(std_scaler_df[outlier_cols])
minmaxscaler_df = df.copy()
minmaxscaler_df[outlier_cols] = MinMaxScaler().fit_transform(minmaxscaler_df[outlier_cols])
yeo_johnson_transformed_df = df.copy()
for column in outlier_cols:
try:
yeo_johnson_transformed_df[column], lambda_ = yeojohnson(yeo_johnson_transformed_df[column])
except :
yeo_johnson_transformed_df[column] = yeo_johnson_transformed_df[column]
print(f"Yeo-Johnson transformation failed for column '{column}'. Original data used.")
# yeo_johnson_transformed_df[column], lambda_ = yeojohnson(yeo_johnson_transformed_df[column])
rank_transformed_df = df.copy()
rank_transformed_df[outlier_cols] = rank_transformed_df[outlier_cols].rank()
winsorize_transformed_df = df.copy()
for column in outlier_cols:
winsorize_transformed_df[column] = winsorize(winsorize_transformed_df[column], limits=[0.05, 0.05])
else:
if df[num_col][df[num_col] <0].sum().sum() == 0:
log_transformed_df = df.copy()
log_transformed_df[num_col] = np.log(log_transformed_df[num_col] + 1e-5)
sqrt_transformed_df = df.copy()
sqrt_transformed_df[num_col] = np.sqrt(sqrt_transformed_df[num_col] + 1e-5)
inverse_log_transformed_winsorize_df = log_transformed_df.copy()
inverse_sqrt_transformed_winsorize_df = sqrt_transformed_df.copy()
for column in num_col:
inverse_log_transformed_winsorize_df[column] = np.exp(winsorize(inverse_log_transformed_winsorize_df[column], limits=[0.05, 0.05]))
inverse_sqrt_transformed_winsorize_df[column] = (winsorize(inverse_sqrt_transformed_winsorize_df[column], limits=[0.05, 0.05]))**2
else:
print("df have values less than zero")
std_scaler_df = df.copy()
std_scaler_df[outlier_cols] = StandardScaler().fit_transform(std_scaler_df[outlier_cols])
minmaxscaler_df = df.copy()
minmaxscaler_df[outlier_cols] = MinMaxScaler().fit_transform(minmaxscaler_df[outlier_cols])
yeo_johnson_transformed_df = df.copy()
for column in num_col:
try:
yeo_johnson_transformed_df[column], lambda_ = yeojohnson(yeo_johnson_transformed_df[column])
except :
yeo_johnson_transformed_df[column] = yeo_johnson_transformed_df[column]
print(f"Yeo-Johnson transformation failed for column '{column}'. Original data used.")
# yeo_johnson_transformed_df[column], lambda_ = yeojohnson(yeo_johnson_transformed_df[column])
rank_transformed_df = df.copy()
rank_transformed_df[num_col] = rank_transformed_df[num_col].rank()
winsorize_transformed_df = df.copy()
for column in num_col:
winsorize_transformed_df[column] = winsorize(winsorize_transformed_df[column], limits=[0.05, 0.05])
if (df[num_col][df[num_col] <0].sum().sum() == 0):
outlier_handled_df = [std_scaler_df,minmaxscaler_df,outliers_dropped_df,log_transformed_df,sqrt_transformed_df,yeo_johnson_transformed_df,
rank_transformed_df,winsorize_transformed_df,inverse_log_transformed_winsorize_df,inverse_sqrt_transformed_winsorize_df]
outlier_handled_df_name = ["std_scaler_df","minmaxscaler_df","outliers_dropped_df", "log_transformed_df","sqrt_transformed_df", "yeo_johnson_transformed_df","rank_transformed_df","winsorize_transformed_df",
"inverse_log_transformed_winsorize_df", "inverse_sqrt_transformed_winsorize_df"]
elif df[outlier_cols][df[outlier_cols] <0].sum().sum() == 0:
outlier_handled_df = [std_scaler_df,minmaxscaler_df,outliers_dropped_df,log_transformed_df,sqrt_transformed_df,yeo_johnson_transformed_df,
rank_transformed_df,winsorize_transformed_df,inverse_log_transformed_winsorize_df,inverse_sqrt_transformed_winsorize_df]
outlier_handled_df_name = ["std_scaler_df","minmaxscaler_df","outliers_dropped_df","log_transformed_df", "sqrt_transformed_df","yeo_johnson_transformed_df","rank_transformed_df",
"winsorize_transformed_df","inverse_log_transformed_winsorize_df","inverse_sqrt_transformed_winsorize_df"]
else:
outlier_handled_df = [std_scaler_df,minmaxscaler_df,outliers_dropped_df,yeo_johnson_transformed_df,rank_transformed_df,winsorize_transformed_df]
outlier_handled_df_name = ["std_scaler_df","minmaxscaler_df","outliers_dropped_df","yeo_johnson_transformed_df","rank_transformed_df","winsorize_transformed_df"]
for j,i in enumerate(outlier_handled_df):
X_train, X_test, y_train, y_test = tts(i,y[i.index],test_size = test_size, random_state = random_state)
evaluationer.evaluation(f"{outlier_handled_df_name[j]}",X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva)
return evaluationer.reg_evaluation_df , outlier_handled_df,outlier_handled_df_name
elif eva =="class":
std_scaler_df = df.copy()
std_scaler_df.loc[:,:] = StandardScaler().fit_transform(std_scaler_df.loc[:,:])
minmaxscaler_df = df.copy()
minmaxscaler_df.loc[:,:] = MinMaxScaler().fit_transform(minmaxscaler_df.loc[:,:])
rank_transformed_df = df.copy()
rank_transformed_df = rank_transformed_df.rank()
outlier_handled_df = [std_scaler_df,minmaxscaler_df,rank_transformed_df]
outlier_handled_df_name = ["std_scaler_df","minmaxscaler_df","rank_transformed_df"]
for j,i in enumerate(outlier_handled_df):
X_train, X_test, y_train, y_test = tts(i,y[i.index],test_size = test_size, random_state = random_state)
evaluationer.evaluation(f"{outlier_handled_df_name[j]}", X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva = "class")
return evaluationer.classification_evaluation_df, outlier_handled_df,outlier_handled_df_name
# returning evaluating dataframe
|