|
import pandas as pd
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
|
|
from sklearn.linear_model import LogisticRegression, SGDClassifier, RidgeClassifier
|
|
from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier,GradientBoostingClassifier,HistGradientBoostingClassifier
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
from sklearn.svm import SVC
|
|
from xgboost import XGBClassifier,XGBRFClassifier
|
|
from sklearn.neural_network import MLPClassifier
|
|
from lightgbm import LGBMClassifier
|
|
from sklearn.naive_bayes import MultinomialNB,CategoricalNB
|
|
|
|
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, Lasso, ElasticNet
|
|
from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor,GradientBoostingRegressor,HistGradientBoostingRegressor
|
|
from sklearn.neighbors import KNeighborsRegressor
|
|
from sklearn.tree import DecisionTreeRegressor
|
|
from sklearn.svm import SVR
|
|
from xgboost import XGBRegressor, XGBRFRegressor
|
|
from sklearn.neural_network import MLPRegressor
|
|
from lightgbm import LGBMRegressor
|
|
from sklearn.naive_bayes import GaussianNB
|
|
|
|
|
|
algos_class = {
|
|
"Logistic Regression": LogisticRegression(),
|
|
"SGD Classifier": SGDClassifier(),
|
|
"Ridge Classifier": RidgeClassifier(),
|
|
"Random Forest Classifier": RandomForestClassifier(),
|
|
"AdaBoost Classifier": AdaBoostClassifier(),
|
|
"Gradient Boosting Classifier": GradientBoostingClassifier(),
|
|
"Hist Gradient Boosting Classifier": HistGradientBoostingClassifier(),
|
|
"K Neighbors Classifier": KNeighborsClassifier(),
|
|
"Decision Tree Classifier": DecisionTreeClassifier(),
|
|
"SVC": SVC(),
|
|
"XGB Classifier": XGBClassifier(),
|
|
"XGBRF Classifier": XGBRFClassifier(),
|
|
"MLP Classifier": MLPClassifier(),
|
|
"LGBM Classifier": LGBMClassifier(),
|
|
"Multinomial Naive Bayes": MultinomialNB(),
|
|
"Categorical Naive Bayes": CategoricalNB()}
|
|
|
|
|
|
algos_reg = {
|
|
"Linear Regression": LinearRegression(),
|
|
"SGD Regressor": SGDRegressor(),
|
|
"Ridge Regressor": Ridge(),
|
|
"Lasso Regressor": Lasso(),
|
|
"ElasticNet Regressor": ElasticNet(),
|
|
"Random Forest Regressor": RandomForestRegressor(),
|
|
"AdaBoost Regressor": AdaBoostRegressor(),
|
|
"Gradient Boosting Regressor": GradientBoostingRegressor(),
|
|
"Hist Gradient Boosting Regressor": HistGradientBoostingRegressor(),
|
|
"K Neighbors Regressor": KNeighborsRegressor(),
|
|
"Decision Tree Regressor": DecisionTreeRegressor(),
|
|
"SVR": SVR(),
|
|
"XGB Regressor": XGBRegressor(),
|
|
"XGBRF Regressor": XGBRFRegressor(),
|
|
"MLP Regressor": MLPRegressor(),
|
|
"LGBM Regressor": LGBMRegressor(),
|
|
"Gaussian Naive Bayes": GaussianNB()}
|
|
|
|
|
|
|
|
Classification_models = pd.DataFrame(data=algos_class.values(), index=algos_class.keys())
|
|
|
|
Regression_models = pd.DataFrame(data=algos_reg.values(), index=algos_reg.keys())
|
|
|
|
|