|
import pandas as pd
|
|
import numpy as np
|
|
import streamlit as st
|
|
from sklearn.impute import KNNImputer,SimpleImputer,IterativeImputer
|
|
import best_tts, evaluationer,models
|
|
from sklearn.experimental import enable_iterative_imputer
|
|
from sklearn.model_selection import train_test_split as tts
|
|
from collections import Counter
|
|
from sklearn.preprocessing import PolynomialFeatures
|
|
from sklearn.metrics import root_mean_squared_error
|
|
import seaborn as sns
|
|
from sklearn.decomposition import PCA
|
|
import grid_search_cv
|
|
import matplotlib.pyplot as plt
|
|
import outliers,best_tts
|
|
import feature_selections
|
|
def Auto_optimizer(X,y,eva,model,model_name,test= None):
|
|
if st.button("Train Regression Model"):
|
|
num_cols = X.select_dtypes(exclude = "O").columns
|
|
cat_cols = X.select_dtypes(include = "O").columns
|
|
st.write("Num_cols",tuple(num_cols))
|
|
st.write("cat_cols",tuple(cat_cols))
|
|
|
|
|
|
|
|
if len(X.isnull().sum()[(X.isnull().sum()/len(X)*100) >40]) >0:
|
|
X = X.drop(columns = X.isnull().sum()[(X.isnull().sum()/len(X)*100) >40].index)
|
|
st.write("Columns with more than 40% null values removed")
|
|
|
|
|
|
len_null = X.isnull().sum().sum()
|
|
|
|
st.write(f"There are {len_null} null values in Train")
|
|
|
|
knn_imputed_num_X = X.copy()
|
|
si_mean_imputed_num_X = X.copy()
|
|
|
|
si_median_imputed_num_X = X.copy()
|
|
si_most_frequent_imputed_num_X = X.copy()
|
|
iter_imputed_num_X = X.copy()
|
|
knn_imputed_X_cat_dropped = knn_imputed_num_X.copy()
|
|
si_mean_imputed_X_cat_dropped = si_mean_imputed_num_X.copy()
|
|
si_median_imputed_X_cat_dropped = si_median_imputed_num_X.copy()
|
|
si_most_frequent_imputed_X_cat_dropped = si_most_frequent_imputed_num_X.copy()
|
|
iter_imputed_X_cat_dropped = iter_imputed_num_X.copy()
|
|
if len_null >0:
|
|
|
|
if X[num_cols].isnull().sum().sum() >0:
|
|
|
|
knn_imputer = KNNImputer(n_neighbors = 5)
|
|
knn_imputed_num_X[num_cols] = knn_imputer.fit_transform(knn_imputed_num_X[num_cols])
|
|
si_imputer = SimpleImputer(strategy = "mean")
|
|
si_mean_imputed_num_X[num_cols] = si_imputer.fit_transform(si_mean_imputed_num_X[num_cols])
|
|
si_imputer = SimpleImputer(strategy = "median")
|
|
si_median_imputed_num_X[num_cols] = si_imputer.fit_transform(si_median_imputed_num_X[num_cols])
|
|
si_imputer = SimpleImputer(strategy = "most_frequent")
|
|
si_most_frequent_imputed_num_X[num_cols] = si_imputer.fit_transform(si_most_frequent_imputed_num_X[num_cols])
|
|
iter_imputer = IterativeImputer(max_iter = 200,random_state= 42)
|
|
iter_imputed_num_X[num_cols] = iter_imputer.fit_transform(iter_imputed_num_X[num_cols])
|
|
knn_imputed_X_cat_dropped = knn_imputed_num_X.copy()
|
|
si_mean_imputed_X_cat_dropped = si_mean_imputed_num_X.copy()
|
|
si_median_imputed_X_cat_dropped = si_median_imputed_num_X.copy()
|
|
si_most_frequent_imputed_X_cat_dropped = si_most_frequent_imputed_num_X.copy()
|
|
iter_imputed_X_cat_dropped = iter_imputed_num_X.copy()
|
|
|
|
if X[cat_cols].isnull().sum().sum() >0:
|
|
|
|
|
|
si_imputer = SimpleImputer(strategy = "most_frequent")
|
|
|
|
knn_imputed_num_X[cat_cols] = si_imputer.fit_transform(knn_imputed_num_X[cat_cols])
|
|
si_imputer = SimpleImputer(strategy = "most_frequent")
|
|
si_mean_imputed_num_X.loc[:,cat_cols] = si_imputer.fit_transform(si_mean_imputed_num_X.loc[:,cat_cols])
|
|
|
|
si_median_imputed_num_X[cat_cols] = si_imputer.fit_transform(si_median_imputed_num_X[cat_cols])
|
|
si_most_frequent_imputed_num_X[cat_cols] = si_imputer.fit_transform(si_most_frequent_imputed_num_X[cat_cols])
|
|
iter_imputed_num_X[cat_cols] = si_imputer.fit_transform(iter_imputed_num_X[cat_cols])
|
|
|
|
knn_imputed_X_cat_dropped = knn_imputed_X_cat_dropped.dropna()
|
|
si_mean_imputed_X_cat_dropped =si_mean_imputed_X_cat_dropped.dropna()
|
|
si_median_imputed_X_cat_dropped =si_median_imputed_X_cat_dropped.dropna()
|
|
si_most_frequent_imputed_X_cat_dropped =si_most_frequent_imputed_X_cat_dropped.dropna()
|
|
iter_imputed_X_cat_dropped =iter_imputed_X_cat_dropped.dropna()
|
|
|
|
|
|
miss_val_dropped_X = X.dropna()
|
|
|
|
|
|
|
|
list_X_after_missing_values= [knn_imputed_num_X,
|
|
si_mean_imputed_num_X,
|
|
si_median_imputed_num_X,
|
|
si_most_frequent_imputed_num_X,
|
|
iter_imputed_num_X,
|
|
knn_imputed_X_cat_dropped,
|
|
si_mean_imputed_X_cat_dropped,
|
|
si_median_imputed_X_cat_dropped,
|
|
si_most_frequent_imputed_X_cat_dropped,
|
|
iter_imputed_X_cat_dropped,
|
|
miss_val_dropped_X]
|
|
list_X_after_missing_values_names= ["knn_imputed_num_X",
|
|
"si_mean_imputed_num_X",
|
|
"si_median_imputed_num_X",
|
|
"si_most_frequent_imputed_num_X",
|
|
"iter_imputed_num_X",
|
|
"knn_imputed_X_cat_dropped",
|
|
"si_mean_imputed_X_cat_dropped",
|
|
"si_median_imputed_X_cat_dropped",
|
|
"si_most_frequent_imputed_X_cat_dropped",
|
|
"iter_imputed_X_cat_dropped",
|
|
"miss_val_dropped_X"]
|
|
|
|
ord_enc_cols = []
|
|
ohe_enc_cols = []
|
|
|
|
if len(cat_cols) == 0:
|
|
st.write("No Categorical Columns in Train")
|
|
else:
|
|
st.write("Select Columns for Ordinal Encoding")
|
|
for column in cat_cols:
|
|
selected = st.checkbox(column)
|
|
if selected:
|
|
st.write(f"No. of Unique value in {column} column are", X[column].nunique())
|
|
ord_enc_cols.append(column)
|
|
ohe_enc_cols = set(cat_cols) -set(ord_enc_cols)
|
|
ohe_enc_cols = list(ohe_enc_cols)
|
|
|
|
if len(ord_enc_cols)>0:
|
|
st.write("ordinal encoded columns" ,tuple(ord_enc_cols))
|
|
if len(ohe_enc_cols)>0:
|
|
st.write("one hot encoded columns" ,tuple(ohe_enc_cols))
|
|
|
|
if len(ord_enc_cols)>0:
|
|
|
|
ordinal_order_vals = []
|
|
|
|
for column in ord_enc_cols:
|
|
unique_vals = X.dropna()[column].unique()
|
|
|
|
|
|
ordered_unique_vals = st.multiselect("Select values in order for Ordinal Encoding",unique_vals,unique_vals)
|
|
ordinal_order_vals.append(ordered_unique_vals)
|
|
|
|
st.write("order of values for Ordinal Encoding",tuple(ordinal_order_vals))
|
|
|
|
if len_null > 0:
|
|
|
|
for df_name, df in enumerate(list_X_after_missing_values):
|
|
|
|
from sklearn.preprocessing import OrdinalEncoder
|
|
ord = OrdinalEncoder(categories=ordinal_order_vals,handle_unknown= "use_encoded_value",unknown_value = -1 )
|
|
df[ord_enc_cols] = ord.fit_transform(df[ord_enc_cols])
|
|
|
|
else :
|
|
from sklearn.preprocessing import OrdinalEncoder
|
|
ord = OrdinalEncoder(categories=ordinal_order_vals,handle_unknown= "use_encoded_value",unknown_value = -1 )
|
|
X[ord_enc_cols] = ord.fit_transform(X[ord_enc_cols])
|
|
|
|
st.write("Ordinal Encoding Completed ✅")
|
|
|
|
if len(ohe_enc_cols)>0:
|
|
if len_null > 0:
|
|
for df_name, df in enumerate(list_X_after_missing_values):
|
|
from sklearn.preprocessing import OneHotEncoder
|
|
ohe = OneHotEncoder(sparse_output = False,handle_unknown = "ignore")
|
|
pd.options.mode.chained_assignment = None
|
|
df.loc[:, ohe.get_feature_names_out()] = ohe.fit_transform(df[ohe_enc_cols])
|
|
df.drop(columns = ohe_enc_cols,inplace = True)
|
|
pd.options.mode.chained_assignment = 'warn'
|
|
else:
|
|
from sklearn.preprocessing import OneHotEncoder
|
|
ohe = OneHotEncoder(sparse_output = False,handle_unknown = "ignore")
|
|
pd.options.mode.chained_assignment = None
|
|
X.loc[:, ohe.get_feature_names_out()] = ohe.fit_transform(X[ohe_enc_cols])
|
|
X.drop(columns = ohe_enc_cols,inplace = True)
|
|
pd.options.mode.chained_assignment = 'warn'
|
|
st.write("OneHot Encoding Completed ✅")
|
|
|
|
|
|
if len(ohe_enc_cols)>0:
|
|
if len_null > 0:
|
|
for name,df in enumerate(list_X_after_missing_values):
|
|
X_train,X_test,y_train,y_test = tts(df,y[df.index],test_size =.2 ,random_state = 42)
|
|
|
|
evaluationer.evaluation(f"{list_X_after_missing_values_names[name]}",X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva)
|
|
else:
|
|
X_train,X_test,y_train,y_test = tts(X,y[X.index],test_size =.2 ,random_state = 42)
|
|
|
|
|
|
evaluationer.evaluation(f"baseline_model",X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva)
|
|
|
|
if len_null >0:
|
|
for name,df in enumerate(list_X_after_missing_values):
|
|
X_train,X_test,y_train,y_test = tts(df,y[df.index],test_size =.2 ,random_state = 42)
|
|
|
|
evaluationer.evaluation(f"{list_X_after_missing_values_names[name]}",X_train,X_test,y_train,y_test,model,root_mean_squared_error,eva)
|
|
|
|
if eva == "class":
|
|
counter = Counter(y)
|
|
total = sum(counter.values())
|
|
balance_ratio = {cls: count / total for cls, count in counter.items()}
|
|
num_classes = len(balance_ratio)
|
|
ideal_ratio = 1 / num_classes
|
|
a = all(abs(ratio - ideal_ratio) <= 0.1 * ideal_ratio for ratio in balance_ratio.values())
|
|
if a == True:
|
|
st.write("Balanced Dataset ✅")
|
|
st.write("Using accuracy for Evaluation")
|
|
value = "test_acc"
|
|
else:
|
|
st.write("Unbalanced Dataset ❌")
|
|
st.write("Using F1 score for Evaluation")
|
|
value = "test_f1"
|
|
|
|
evaluationer.classification_evaluation_df.sort_values(by = value,inplace= True)
|
|
name = str(evaluationer.classification_evaluation_df.iloc[-1,0])
|
|
st.write("df name",evaluationer.classification_evaluation_df.iloc[-1,0])
|
|
if len_null >0:
|
|
b = list_X_after_missing_values_names.index(name)
|
|
|
|
st.write("df",list_X_after_missing_values[b])
|
|
X = list_X_after_missing_values[b]
|
|
if eva == "reg":
|
|
st.write("Using R2 score for Evaluation",evaluationer.reg_evaluation_df)
|
|
value = "test_r2"
|
|
evaluationer.reg_evaluation_df.sort_values(by = value,inplace= True)
|
|
|
|
name = str(evaluationer.reg_evaluation_df.iloc[-1,0])
|
|
|
|
if len_null >0:
|
|
b = list_X_after_missing_values_names.index(name)
|
|
|
|
st.write("df",list_X_after_missing_values[b])
|
|
X = list_X_after_missing_values[b]
|
|
|
|
|
|
|
|
num_plots = len(num_cols)
|
|
cols = 2
|
|
rows = (num_plots + cols - 1) // cols
|
|
|
|
fig, axes = plt.subplots(rows, cols, figsize=(15, 5 * rows))
|
|
|
|
|
|
axes = axes.flatten()
|
|
for ax in axes[num_plots:]:
|
|
fig.delaxes(ax)
|
|
|
|
for i, col in enumerate(num_cols):
|
|
sns.histplot(X[col], ax=axes[i],kde = True,color=sns.color_palette('Oranges', as_cmap=True)(0.7))
|
|
axes[i].set_title(col)
|
|
|
|
|
|
plt.tight_layout()
|
|
|
|
|
|
st.pyplot(fig)
|
|
|
|
|
|
num_plots = len(num_cols)
|
|
cols = 3
|
|
rows = (num_plots + cols - 1) // cols
|
|
|
|
fig, axes = plt.subplots(rows, cols, figsize=(15, 5 * rows))
|
|
|
|
|
|
axes = axes.flatten()
|
|
for ax in axes[num_plots:]:
|
|
fig.delaxes(ax)
|
|
|
|
for i, col in enumerate(num_cols):
|
|
sns.boxplot(y=X[col], ax=axes[i],palette="magma")
|
|
axes[i].set_title(col)
|
|
|
|
|
|
plt.tight_layout()
|
|
|
|
|
|
st.pyplot(fig)
|
|
|
|
outlier_cols = st.multiselect("De-Select columns for Detecting Outliers", num_cols,default= list(num_cols))
|
|
|
|
st.write("Checking for Outliers")
|
|
outliers_df_X,outlier_indexes = outliers.detect_outliers(X,list(outlier_cols))
|
|
st.write("Outliers in Dataframe Summary",outliers_df_X)
|
|
st.write("Columns for Outliers handling",tuple(outliers_df_X["columns name"]))
|
|
|
|
select_outlier_cols = st.multiselect("Select columns for Outlier Handling",tuple(outliers_df_X["columns name"]),default =tuple(outliers_df_X["columns name"]))
|
|
resultant,outlier_handled_df,outlier_handled_df_name= outliers.outlier_handling(X,y,model,outlier_indexes = outlier_indexes,outlier_cols = select_outlier_cols ,method = root_mean_squared_error,test_size = 0.2, random_state = 42,eva = eva)
|
|
st.write("outlier handling with methods",resultant)
|
|
st.write("Best method with outlier handling",resultant.sort_values(by = "test_r2").tail(1).iloc[:,0].values[0])
|
|
try :
|
|
st.write("Best X Data Index No.",outlier_handled_df_name.index(resultant.sort_values(by = "test_r2").tail(1).iloc[:,0].values[0]))
|
|
|
|
st.write("Best X DataFrame after outlier handling ",outlier_handled_df[outlier_handled_df_name.index(resultant.sort_values(by = "test_r2").tail(1).iloc[:,0].values[0])])
|
|
X = outlier_handled_df[outlier_handled_df_name.index(resultant.sort_values(by = "test_r2").tail(1).iloc[:,0].values[0])]
|
|
except :
|
|
"evaluation of baseline model is better continuing with baseline model"
|
|
|
|
|
|
X_train,X_test,y_train,y_test = tts(X,y[X.index],random_state = 42,test_size = 0.2)
|
|
st.write("result_df",X)
|
|
|
|
|
|
|
|
if eva == "reg":
|
|
try:
|
|
result_df_1 , feature_col, feature_col_name = feature_selections.feature_selection(X_train,X_test,y_train,y_test,model,alpha = 0.05)
|
|
X = X.drop(columns = feature_col[feature_col_name.index(result_df_1.sort_values(by = "test_r2").tail(1).iloc[:,0].values[0])])
|
|
except:
|
|
"evaluation by feature selection is not better than previous"
|
|
|
|
try:
|
|
result,X_train_b,X_test_b,y_train_b,y_test_b = best_tts.best_tts(X,y,model,eva)
|
|
st.write("result_df",result)
|
|
except:
|
|
X_train,X_test,y_train,y_test = tts(X,y[X.index],test_size =0.2,random_state = 42)
|
|
elif eva =="class":
|
|
try:
|
|
result_df_1 , feature_col, feature_col_name = feature_selections.clas_feature_selection(X_train,X_test,y_train,y_test,model)
|
|
X = X.drop(columns = feature_col[feature_col_name.index(result_df_1.sort_values(by = "test_acc").tail(1).iloc[:,0].values[0])])
|
|
except:
|
|
"evaluation by feature selection is not better than previous"
|
|
|
|
try:
|
|
result,X_train_b,X_test_b,y_train_b,y_test_b = best_tts.best_tts(X,y,model,eva)
|
|
st.write("result_df",result)
|
|
except:
|
|
X_train,X_test,y_train,y_test = tts(X,y[X.index],test_size =0.2,random_state = 42)
|
|
|
|
|
|
|
|
|
|
st.write("cheking with polynomial features")
|
|
poly = PolynomialFeatures(degree=(2))
|
|
X_train_poly = poly.fit_transform(X_train)
|
|
X_test_poly = poly.transform(X_test)
|
|
result_df_2 = evaluationer.evaluation("polynomial features degree 2",X_train_poly,X_test_poly,y_train,y_test,model,root_mean_squared_error,eva)
|
|
st.write("after polynomial features degree 2",evaluationer.reg_evaluation_df)
|
|
poly1 = PolynomialFeatures(degree=(3))
|
|
X_train_poly1 = poly.fit_transform(X_train)
|
|
X_test_poly1 = poly.transform(X_test)
|
|
evaluationer.evaluation("polynomial features degree 3",X_train_poly1,X_test_poly1,y_train,y_test,model,root_mean_squared_error,eva)
|
|
st.write("after polynomial features degree 3",evaluationer.reg_evaluation_df)
|
|
|
|
pca = PCA(n_components=0.95)
|
|
X_train_pca = pca.fit_transform(X_train)
|
|
X_test_pca = pca.transform(X_test)
|
|
evaluationer.evaluation("PCA",X_train_pca,X_test_pca,y_train,y_test,model,root_mean_squared_error,eva)
|
|
st.write("After PCA",evaluationer.reg_evaluation_df)
|
|
|
|
grid_search_cv.perform_grid_search(model,model_name,X_train,X_test,y_train,y_test,eva)
|
|
st.write("best param",evaluationer.reg_evaluation_df)
|
|
st.sidebar.button("click to clear evaluation metrics",evaluationer.reg_evaluation_df.drop(index = evaluationer.reg_evaluation_df.index))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|