File size: 26,036 Bytes
ec22274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import time
import yaml
import tiktoken
import torch
import torch.nn.functional as F
from math import log, exp

from transformers import LogitsProcessor, LogitsProcessorList

from modules import shared
from modules.text_generation import encode, decode, generate_reply

from extensions.openai.defaults import get_default_req_params, default, clamp
from extensions.openai.utils import end_line, debug_msg
from extensions.openai.errors import *


# Thanks to @Cypherfox [Cypherfoxy] for the logits code, blame to @matatonic
class LogitsBiasProcessor(LogitsProcessor):
    def __init__(self, logit_bias={}):
        self.logit_bias = logit_bias
        if self.logit_bias:
            self.keys = list([int(key) for key in self.logit_bias.keys()])
            values = [ self.logit_bias[str(key)] for key in self.keys ]
            self.values = torch.tensor(values, dtype=torch.float, device=shared.model.device)
            debug_msg(f"{self})")

    def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
        if self.logit_bias:
            debug_msg(logits[0, self.keys], " + ", self.values)
            logits[0, self.keys] += self.values
            debug_msg(" --> ", logits[0, self.keys])
            debug_msg(" max/min ", float(torch.max(logits[0])), float(torch.min(logits[0])))
        return logits

    def __repr__(self):
        return f"<{self.__class__.__name__}(logit_bias={self.logit_bias})>"

class LogprobProcessor(LogitsProcessor):
    def __init__(self, logprobs=None):
        self.logprobs = logprobs
        self.token_alternatives = {}

    def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
        if self.logprobs is not None:  # 0-5
            log_e_probabilities = F.log_softmax(logits, dim=1)
            top_values, top_indices = torch.topk(log_e_probabilities, k=self.logprobs+1)
            top_tokens = [ decode(tok) for tok in top_indices[0] ]
            top_probs = [ float(x) for x in top_values[0] ]
            self.token_alternatives = dict(zip(top_tokens, top_probs))
            debug_msg(f"{self.__class__.__name__}(logprobs+1={self.logprobs+1}, token_alternatives={self.token_alternatives})")
        return logits

    def __repr__(self):
        return f"<{self.__class__.__name__}(logprobs={self.logprobs}, token_alternatives={self.token_alternatives})>"


def convert_logprobs_to_tiktoken(model, logprobs):
# more problems than it's worth.
#    try:
#        encoder = tiktoken.encoding_for_model(model)
#        # just pick the first one if it encodes to multiple tokens... 99.9% not required and maybe worse overall.
#        return dict([(encoder.decode([encoder.encode(token)[0]]), prob) for token, prob in logprobs.items()])
#    except KeyError:
#        # assume native tokens if we can't find the tokenizer
        return logprobs


def marshal_common_params(body):
    # Request Parameters
    # Try to use openai defaults or map them to something with the same intent

    req_params = get_default_req_params()

    # Common request parameters
    req_params['truncation_length'] = shared.settings['truncation_length']
    req_params['add_bos_token'] = shared.settings.get('add_bos_token', req_params['add_bos_token'])
    req_params['seed'] = shared.settings.get('seed', req_params['seed'])
    req_params['custom_stopping_strings'] = shared.settings['custom_stopping_strings']

    # OpenAI API Parameters
    # model - ignored for now, TODO: When we can reliably load a model or lora from a name only change this
    req_params['requested_model'] = body.get('model', shared.model_name)

    req_params['suffix'] = default(body, 'suffix', req_params['suffix'])
    req_params['temperature'] = clamp(default(body, 'temperature', req_params['temperature']), 0.01, 1.99)  # fixup absolute 0.0/2.0
    req_params['top_p'] = clamp(default(body, 'top_p', req_params['top_p']), 0.01, 1.0)
    n = default(body, 'n', 1)
    if n != 1:
        raise InvalidRequestError(message="Only n = 1 is supported.", param='n')

    if 'stop' in body:  # str or array, max len 4 (ignored)
        if isinstance(body['stop'], str):
            req_params['stopping_strings'] = [body['stop']]  # non-standard parameter
        elif isinstance(body['stop'], list):
            req_params['stopping_strings'] = body['stop']

    # presence_penalty - ignored
    # frequency_penalty - ignored

    # pass through unofficial params
    req_params['repetition_penalty'] = default(body, 'repetition_penalty', req_params['repetition_penalty'])
    req_params['encoder_repetition_penalty'] = default(body, 'encoder_repetition_penalty', req_params['encoder_repetition_penalty'])

    # user - ignored

    logits_processor = []
    logit_bias = body.get('logit_bias', None)
    if logit_bias:  # {str: float, ...}
        # XXX convert tokens from tiktoken based on requested model
        # Ex.: 'logit_bias': {'1129': 100, '11442': 100, '16243': 100}
        try:
            encoder = tiktoken.encoding_for_model(req_params['requested_model'])
            new_logit_bias = {}
            for logit, bias in logit_bias.items():
                for x in encode(encoder.decode([int(logit)]), add_special_tokens=False)[0]:
                    if int(x) in [0, 1, 2, 29871]: # XXX LLAMA tokens
                        continue
                    new_logit_bias[str(int(x))] = bias
            debug_msg('logit_bias_map', logit_bias, '->', new_logit_bias)
            logit_bias = new_logit_bias
        except KeyError:
            pass  # assume native tokens if we can't find the tokenizer

        logits_processor = [LogitsBiasProcessor(logit_bias)]

    logprobs = None  # coming to chat eventually
    if 'logprobs' in body:
        logprobs = default(body, 'logprobs', 0)  # maybe cap at topk? don't clamp 0-5.
        req_params['logprob_proc'] = LogprobProcessor(logprobs)
        logits_processor.extend([req_params['logprob_proc']])
    else:
        logprobs = None

    if logits_processor:  # requires logits_processor support
        req_params['logits_processor'] = LogitsProcessorList(logits_processor)

    return req_params


def messages_to_prompt(body: dict, req_params: dict, max_tokens):
    # functions
    if body.get('functions', []):  # chat only
        raise InvalidRequestError(message="functions is not supported.", param='functions')
    if body.get('function_call', ''):  # chat only, 'none', 'auto', {'name': 'func'}
        raise InvalidRequestError(message="function_call is not supported.", param='function_call')

    if not 'messages' in body:
        raise InvalidRequestError(message="messages is required", param='messages')

    messages = body['messages']

    role_formats = {
        'user': 'User: {message}\n',
        'assistant': 'Assistant: {message}\n',
        'system': '{message}',
        'context': 'You are a helpful assistant. Answer as concisely as possible.\nUser: I want your assistance.\nAssistant: Sure! What can I do for you?',
        'prompt': 'Assistant:',
    }

    if not 'stopping_strings' in req_params:
        req_params['stopping_strings'] = []

    # Instruct models can be much better
    if shared.settings['instruction_template']:
        try:
            instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r'))

            template = instruct['turn_template']
            system_message_template = "{message}"
            system_message_default = instruct.get('context', '') # can be missing
            bot_start = template.find('<|bot|>')  # So far, 100% of instruction templates have this token
            user_message_template = template[:bot_start].replace('<|user-message|>', '{message}').replace('<|user|>', instruct.get('user', ''))
            bot_message_template = template[bot_start:].replace('<|bot-message|>', '{message}').replace('<|bot|>', instruct.get('bot', ''))
            bot_prompt = bot_message_template[:bot_message_template.find('{message}')].rstrip(' ')

            role_formats = {
                'user': user_message_template,
                'assistant': bot_message_template,
                'system': system_message_template,
                'context': system_message_default,
                'prompt': bot_prompt,
            }

            if 'Alpaca' in shared.settings['instruction_template']:
                req_params['stopping_strings'].extend(['\n###'])
            elif instruct['user']:  # WizardLM and some others have no user prompt.
                req_params['stopping_strings'].extend(['\n' + instruct['user'], instruct['user']])

            debug_msg(f"Loaded instruction role format: {shared.settings['instruction_template']}")

        except Exception as e:
            req_params['stopping_strings'].extend(['\nUser:', 'User:'])  # XXX User: prompt here also

            print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}")
            print("Warning: Loaded default instruction-following template for model.")

    else:
        req_params['stopping_strings'].extend(['\nUser:', 'User:'])  # XXX User: prompt here also
        print("Warning: Loaded default instruction-following template for model.")

    system_msgs = []
    chat_msgs = []

    # You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date}
    context_msg = role_formats['system'].format(message=role_formats['context']) if role_formats['context'] else ''
    context_msg = end_line(context_msg)

    # Maybe they sent both? This is not documented in the API, but some clients seem to do this.
    if 'prompt' in body:
        context_msg = end_line(role_formats['system'].format(message=body['prompt'])) + context_msg

    for m in messages:
        if 'role' not in m:
            raise InvalidRequestError(message="messages: missing role", param='messages')
        if 'content' not in m:
            raise InvalidRequestError(message="messages: missing content", param='messages')
        
        role = m['role']
        content = m['content']
        # name = m.get('name', None)
        # function_call = m.get('function_call', None) # user name or function name with output in content
        msg = role_formats[role].format(message=content)
        if role == 'system':
            system_msgs.extend([msg])
        elif role == 'function':
            raise InvalidRequestError(message="role: function is not supported.", param='messages')
        else:
            chat_msgs.extend([msg])

    system_msg = '\n'.join(system_msgs)
    system_msg = end_line(system_msg)

    prompt = system_msg + context_msg + ''.join(chat_msgs) + role_formats['prompt']

    token_count = len(encode(prompt)[0])

    if token_count >= req_params['truncation_length']:
        err_msg = f"This model maximum context length is {req_params['truncation_length']} tokens. However, your messages resulted in over {token_count} tokens."
        raise InvalidRequestError(message=err_msg, param='messages')

    if max_tokens > 0 and token_count + max_tokens > req_params['truncation_length']:
        err_msg = f"This model maximum context length is {req_params['truncation_length']} tokens. However, your messages resulted in over {token_count} tokens and max_tokens is {max_tokens}."
        print(f"Warning: ${err_msg}")
        # raise InvalidRequestError(message=err_msg, params='max_tokens')

    return prompt, token_count


def chat_completions(body: dict, is_legacy: bool = False) -> dict:
    # Chat Completions
    object_type = 'chat.completions'
    created_time = int(time.time())
    cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000))
    resp_list = 'data' if is_legacy else 'choices'

    # common params
    req_params = marshal_common_params(body)
    req_params['stream'] = False
    requested_model = req_params.pop('requested_model')
    logprob_proc = req_params.pop('logprob_proc', None)
    req_params['top_k'] = 20  # There is no best_of/top_k param for chat, but it is much improved with a higher top_k.

    # chat default max_tokens is 'inf', but also flexible
    max_tokens = 0
    max_tokens_str = 'length' if is_legacy else 'max_tokens'
    if max_tokens_str in body:
        max_tokens = default(body, max_tokens_str, req_params['truncation_length'])
        req_params['max_new_tokens'] = max_tokens
    else:
        req_params['max_new_tokens'] = req_params['truncation_length']

    # format the prompt from messages
    prompt, token_count = messages_to_prompt(body, req_params, max_tokens)

    # set real max, avoid deeper errors
    if req_params['max_new_tokens'] + token_count >= req_params['truncation_length']:
        req_params['max_new_tokens'] = req_params['truncation_length'] - token_count

    # generate reply #######################################
    debug_msg({'prompt': prompt, 'req_params': req_params})
    stopping_strings = req_params.pop('stopping_strings', [])
    logprob_proc = req_params.pop('logprob_proc', None)
    generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)

    answer = ''
    for a in generator:
        answer = a

    # strip extra leading space off new generated content
    if answer and answer[0] == ' ':
        answer = answer[1:]

    completion_token_count = len(encode(answer)[0])
    stop_reason = "stop"
    if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= req_params['max_new_tokens']:
        stop_reason = "length"

    resp = {
        "id": cmpl_id,
        "object": object_type,
        "created": created_time,
        "model": shared.model_name,  # TODO: add Lora info?
        resp_list: [{
            "index": 0,
            "finish_reason": stop_reason,
            "message": {"role": "assistant", "content": answer}
        }],
        "usage": {
            "prompt_tokens": token_count,
            "completion_tokens": completion_token_count,
            "total_tokens": token_count + completion_token_count
        }
    }
    if logprob_proc:  # not official for chat yet
        top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
        resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
    # else:
    #     resp[resp_list][0]["logprobs"] = None

    return resp


# generator
def stream_chat_completions(body: dict, is_legacy: bool = False):

    # Chat Completions
    stream_object_type = 'chat.completions.chunk'
    created_time = int(time.time())
    cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000))
    resp_list = 'data' if is_legacy else 'choices'

    # common params
    req_params = marshal_common_params(body)
    req_params['stream'] = True
    requested_model = req_params.pop('requested_model')
    logprob_proc = req_params.pop('logprob_proc', None)
    req_params['top_k'] = 20  # There is no best_of/top_k param for chat, but it is much improved with a higher top_k.

    # chat default max_tokens is 'inf', but also flexible
    max_tokens = 0
    max_tokens_str = 'length' if is_legacy else 'max_tokens'
    if max_tokens_str in body:
        max_tokens = default(body, max_tokens_str, req_params['truncation_length'])
        req_params['max_new_tokens'] = max_tokens
    else:
        req_params['max_new_tokens'] = req_params['truncation_length']

    # format the prompt from messages
    prompt, token_count = messages_to_prompt(body, req_params, max_tokens)

    # set real max, avoid deeper errors
    if req_params['max_new_tokens'] + token_count >= req_params['truncation_length']:
        req_params['max_new_tokens'] = req_params['truncation_length'] - token_count

    def chat_streaming_chunk(content):
        # begin streaming
        chunk = {
            "id": cmpl_id,
            "object": stream_object_type,
            "created": created_time,
            "model": shared.model_name,
            resp_list: [{
                "index": 0,
                "finish_reason": None,
                # So yeah... do both methods? delta and messages.
                "message": {'role': 'assistant', 'content': content},
                "delta": {'role': 'assistant', 'content': content},
            }],
        }

        if logprob_proc:  # not official for chat yet
            top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
            chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
        # else:
        #    chunk[resp_list][0]["logprobs"] = None
        return chunk

    yield chat_streaming_chunk('')

    # generate reply #######################################
    debug_msg({'prompt': prompt, 'req_params': req_params})

    stopping_strings = req_params.pop('stopping_strings', [])

    generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)

    answer = ''
    seen_content = ''
    completion_token_count = 0

    for a in generator:
        answer = a

        len_seen = len(seen_content)
        new_content = answer[len_seen:]

        if not new_content or chr(0xfffd) in new_content:  # partial unicode character, don't send it yet.
            continue

        seen_content = answer

        # strip extra leading space off new generated content
        if len_seen == 0 and new_content[0] == ' ':
            new_content = new_content[1:]

        chunk = chat_streaming_chunk(new_content)

        yield chunk

    # to get the correct token_count, strip leading space if present
    if answer and answer[0] == ' ':
        answer = answer[1:]

    completion_token_count = len(encode(answer)[0])
    stop_reason = "stop"
    if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= req_params['max_new_tokens']:
        stop_reason = "length"

    chunk = chat_streaming_chunk('')
    chunk[resp_list][0]['finish_reason'] = stop_reason
    chunk['usage'] = {
        "prompt_tokens": token_count,
        "completion_tokens": completion_token_count,
        "total_tokens": token_count + completion_token_count
    }

    yield chunk


def completions(body: dict, is_legacy: bool = False):
    # Legacy
    # Text Completions
    object_type = 'text_completion'
    created_time = int(time.time())
    cmpl_id = "conv-%d" % (int(time.time() * 1000000000))
    resp_list = 'data' if is_legacy else 'choices'

    # ... encoded as a string, array of strings, array of tokens, or array of token arrays.
    prompt_str = 'context' if is_legacy else 'prompt'
    if not prompt_str in body:
        raise InvalidRequestError("Missing required input", param=prompt_str)

    prompt = body[prompt_str]
    if isinstance(prompt, list):
        if prompt and isinstance(prompt[0], int):
            try:
                encoder = tiktoken.encoding_for_model(requested_model)
                prompt = encoder.decode(prompt)
            except KeyError:
                prompt = decode(prompt)[0]
        else:
            raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str)

    # common params
    req_params = marshal_common_params(body)
    req_params['stream'] = False
    max_tokens_str = 'length' if is_legacy else 'max_tokens'
    max_tokens = default(body, max_tokens_str, req_params['max_new_tokens'])
    req_params['max_new_tokens'] = max_tokens
    requested_model = req_params.pop('requested_model')
    logprob_proc = req_params.pop('logprob_proc', None)

    token_count = len(encode(prompt)[0])

    if token_count + max_tokens > req_params['truncation_length']:
        err_msg = f"The token count of your prompt ({token_count}) plus max_tokens ({max_tokens}) cannot exceed the model's context length ({req_params['truncation_length']})."
        # print(f"Warning: ${err_msg}")
        raise InvalidRequestError(message=err_msg, param=max_tokens_str)

    req_params['echo'] = default(body, 'echo', req_params['echo'])
    req_params['top_k'] = default(body, 'best_of', req_params['top_k'])

    # generate reply #######################################
    debug_msg({'prompt': prompt, 'req_params': req_params})
    stopping_strings = req_params.pop('stopping_strings', [])
    generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)

    answer = ''

    for a in generator:
        answer = a

    # strip extra leading space off new generated content
    if answer and answer[0] == ' ':
        answer = answer[1:]

    completion_token_count = len(encode(answer)[0])
    stop_reason = "stop"
    if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens:
        stop_reason = "length"

    resp = {
        "id": cmpl_id,
        "object": object_type,
        "created": created_time,
        "model": shared.model_name,  # TODO: add Lora info?
        resp_list: [{
            "index": 0,
            "finish_reason": stop_reason,
            "text": answer,
        }],
        "usage": {
            "prompt_tokens": token_count,
            "completion_tokens": completion_token_count,
            "total_tokens": token_count + completion_token_count
        }
    }

    if logprob_proc and logprob_proc.token_alternatives:
        top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
        resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
    else:
        resp[resp_list][0]["logprobs"] = None

    return resp


# generator
def stream_completions(body: dict, is_legacy: bool = False):
    # Legacy
    # Text Completions
    # object_type = 'text_completion'
    stream_object_type = 'text_completion.chunk'
    created_time = int(time.time())
    cmpl_id = "conv-%d" % (int(time.time() * 1000000000))
    resp_list = 'data' if is_legacy else 'choices'

    # ... encoded as a string, array of strings, array of tokens, or array of token arrays.
    prompt_str = 'context' if is_legacy else 'prompt'
    if not prompt_str in body:
        raise InvalidRequestError("Missing required input", param=prompt_str)

    prompt = body[prompt_str]
    if isinstance(prompt, list):
        if prompt and isinstance(prompt[0], int):
            try:
                encoder = tiktoken.encoding_for_model(requested_model)
                prompt = encoder.decode(prompt)
            except KeyError:
                prompt = decode(prompt)[0]
        else:
            raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str)

    # common params
    req_params = marshal_common_params(body)
    req_params['stream'] = True
    max_tokens_str = 'length' if is_legacy else 'max_tokens'
    max_tokens = default(body, max_tokens_str, req_params['max_new_tokens'])
    req_params['max_new_tokens'] = max_tokens
    requested_model = req_params.pop('requested_model')
    logprob_proc = req_params.pop('logprob_proc', None)

    token_count = len(encode(prompt)[0])

    if token_count + max_tokens > req_params['truncation_length']:
        err_msg = f"The token count of your prompt ({token_count}) plus max_tokens ({max_tokens}) cannot exceed the model's context length ({req_params['truncation_length']})."
        # print(f"Warning: ${err_msg}")
        raise InvalidRequestError(message=err_msg, param=max_tokens_str)

    req_params['echo'] = default(body, 'echo', req_params['echo'])
    req_params['top_k'] = default(body, 'best_of', req_params['top_k'])

    def text_streaming_chunk(content):
        # begin streaming
        chunk = {
            "id": cmpl_id,
            "object": stream_object_type,
            "created": created_time,
            "model": shared.model_name,
            resp_list: [{
                "index": 0,
                "finish_reason": None,
                "text": content,
            }],
        }
        if logprob_proc:
            top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
            chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
        else:
            chunk[resp_list][0]["logprobs"] = None

        return chunk

    yield text_streaming_chunk('')

    # generate reply #######################################
    debug_msg({'prompt': prompt, 'req_params': req_params})
    stopping_strings = req_params.pop('stopping_strings', [])
    logprob_proc = req_params.pop('logprob_proc', None)
    generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)

    answer = ''
    seen_content = ''
    completion_token_count = 0

    for a in generator:
        answer = a

        len_seen = len(seen_content)
        new_content = answer[len_seen:]

        if not new_content or chr(0xfffd) in new_content:  # partial unicode character, don't send it yet.
            continue

        seen_content = answer

        # strip extra leading space off new generated content
        if len_seen == 0 and new_content[0] == ' ':
            new_content = new_content[1:]

        chunk = text_streaming_chunk(new_content)

        yield chunk

    # to get the correct count, we strip the leading space if present
    if answer and answer[0] == ' ':
        answer = answer[1:]

    completion_token_count = len(encode(answer)[0])
    stop_reason = "stop"
    if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens:
        stop_reason = "length"

    chunk = text_streaming_chunk('')
    chunk[resp_list][0]["finish_reason"] = stop_reason
    chunk["usage"] = {
        "prompt_tokens": token_count,
        "completion_tokens": completion_token_count,
        "total_tokens": token_count + completion_token_count
    }

    yield chunk