Spaces:
Runtime error
Runtime error
File size: 11,864 Bytes
ec22274 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import ast
import copy
import random
import re
import time
import traceback
import numpy as np
import torch
import transformers
from transformers import LogitsProcessorList
import modules.shared as shared
from modules.callbacks import (
Iteratorize,
Stream,
_StopEverythingStoppingCriteria
)
from modules.extensions import apply_extensions
from modules.html_generator import generate_4chan_html, generate_basic_html
from modules.logging_colors import logger
from modules.models import clear_torch_cache, local_rank
def generate_reply(*args, **kwargs):
shared.generation_lock.acquire()
try:
for result in _generate_reply(*args, **kwargs):
yield result
finally:
shared.generation_lock.release()
def get_max_prompt_length(state):
return state['truncation_length'] - state['max_new_tokens']
def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel']:
input_ids = shared.tokenizer.encode(str(prompt))
input_ids = np.array(input_ids).reshape(1, len(input_ids))
return input_ids
else:
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens)
# This is a hack for making replies more creative.
if not add_bos_token and input_ids[0][0] == shared.tokenizer.bos_token_id:
input_ids = input_ids[:, 1:]
# Handling truncation
if truncation_length is not None:
input_ids = input_ids[:, -truncation_length:]
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel'] or shared.args.cpu:
return input_ids
elif shared.args.deepspeed:
return input_ids.to(device=local_rank)
elif torch.backends.mps.is_available():
device = torch.device('mps')
return input_ids.to(device)
else:
return input_ids.cuda()
def get_encoded_length(prompt):
length_after_extensions = apply_extensions('tokenized_length', prompt)
if length_after_extensions is not None:
return length_after_extensions
return len(encode(prompt)[0])
def decode(output_ids, skip_special_tokens=True):
return shared.tokenizer.decode(output_ids, skip_special_tokens)
# Removes empty replies from gpt4chan outputs
def fix_gpt4chan(s):
for i in range(10):
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
s = re.sub("--- [0-9]*\n *\n---", "---", s)
s = re.sub("--- [0-9]*\n\n\n---", "---", s)
return s
# Fix the LaTeX equations in galactica
def fix_galactica(s):
s = s.replace(r'\[', r'$')
s = s.replace(r'\]', r'$')
s = s.replace(r'\(', r'$')
s = s.replace(r'\)', r'$')
s = s.replace(r'$$', r'$')
s = re.sub(r'\n', r'\n\n', s)
s = re.sub(r"\n{3,}", "\n\n", s)
return s
def get_reply_from_output_ids(output_ids, input_ids, original_question, state, is_chat=False):
if shared.is_seq2seq:
reply = decode(output_ids, state['skip_special_tokens'])
else:
new_tokens = len(output_ids) - len(input_ids[0])
reply = decode(output_ids[-new_tokens:], state['skip_special_tokens'])
# Prevent LlamaTokenizer from skipping a space
if type(shared.tokenizer) in [transformers.LlamaTokenizer, transformers.LlamaTokenizerFast] and len(output_ids) > 0:
if shared.tokenizer.convert_ids_to_tokens(int(output_ids[-new_tokens])).startswith('▁'):
reply = ' ' + reply
return reply
def formatted_outputs(reply, model_name):
if any(s in model_name for s in ['gpt-4chan', 'gpt4chan']):
reply = fix_gpt4chan(reply)
return reply, generate_4chan_html(reply)
else:
return reply, generate_basic_html(reply)
def set_manual_seed(seed):
seed = int(seed)
if seed == -1:
seed = random.randint(1, 2**31)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
return seed
def stop_everything_event():
shared.stop_everything = True
def generate_reply_wrapper(question, state, stopping_strings=None):
reply = question if not shared.is_seq2seq else ''
yield formatted_outputs(reply, shared.model_name)
for reply in generate_reply(question, state, stopping_strings, is_chat=False):
if not shared.is_seq2seq:
reply = question + reply
yield formatted_outputs(reply, shared.model_name)
def apply_stopping_strings(reply, all_stop_strings):
stop_found = False
for string in all_stop_strings:
idx = reply.find(string)
if idx != -1:
reply = reply[:idx]
stop_found = True
break
if not stop_found:
# If something like "\nYo" is generated just before "\nYou:"
# is completed, trim it
for string in all_stop_strings:
for j in range(len(string) - 1, 0, -1):
if reply[-j:] == string[:j]:
reply = reply[:-j]
break
else:
continue
break
return reply, stop_found
def _generate_reply(question, state, stopping_strings=None, is_chat=False):
generate_func = apply_extensions('custom_generate_reply')
if generate_func is None:
if shared.model_name == 'None' or shared.model is None:
logger.error("No model is loaded! Select one in the Model tab.")
yield ''
return
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel']:
generate_func = generate_reply_custom
else:
generate_func = generate_reply_HF
# Preparing the input
original_question = question
if not is_chat:
state = apply_extensions('state', state)
question = apply_extensions('input', question, state)
# Finding the stopping strings
all_stop_strings = []
for st in (stopping_strings, ast.literal_eval(f"[{state['custom_stopping_strings']}]")):
if type(st) is list and len(st) > 0:
all_stop_strings += st
if shared.args.verbose:
print(f'\n\n{question}\n--------------------\n')
shared.stop_everything = False
clear_torch_cache()
seed = set_manual_seed(state['seed'])
last_update = -1
reply = ''
is_stream = state['stream']
if len(all_stop_strings) > 0 and not state['stream']:
state = copy.deepcopy(state)
state['stream'] = True
for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat):
reply, stop_found = apply_stopping_strings(reply, all_stop_strings)
if is_stream:
cur_time = time.time()
if cur_time - last_update > 0.041666666666666664: # Limit streaming to 24 fps
last_update = cur_time
yield reply
if stop_found:
break
if not is_chat:
reply = apply_extensions('output', reply, state)
yield reply
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False):
generate_params = {}
for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'tfs', 'top_a', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta']:
generate_params[k] = state[k]
for k in ['epsilon_cutoff', 'eta_cutoff']:
if state[k] > 0:
generate_params[k] = state[k] * 1e-4
if state['ban_eos_token']:
generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id]
if shared.args.no_cache:
generate_params.update({'use_cache': False})
if shared.args.deepspeed:
generate_params.update({'synced_gpus': True})
# Encode the input
input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))
output = input_ids[0]
cuda = not any((shared.args.cpu, shared.args.deepspeed))
# Add the encoded tokens to generate_params
question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None)
original_input_ids = input_ids
generate_params.update({'inputs': input_ids})
if inputs_embeds is not None:
generate_params.update({'inputs_embeds': inputs_embeds})
# Stopping criteria / eos token
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
generate_params['eos_token_id'] = eos_token_ids
generate_params['stopping_criteria'] = transformers.StoppingCriteriaList()
generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria())
processor = state.get('logits_processor', LogitsProcessorList([]))
# In case folks just pass in a processor by itself.
if type(processor) != LogitsProcessorList:
processor = LogitsProcessorList([processor])
apply_extensions('logits_processor', processor, input_ids)
generate_params['logits_processor'] = processor
t0 = time.time()
try:
if not is_chat and not shared.is_seq2seq:
yield ''
# Generate the entire reply at once.
if not state['stream']:
with torch.no_grad():
output = shared.model.generate(**generate_params)[0]
if cuda:
output = output.cuda()
yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat)
# Stream the reply 1 token at a time.
# This is based on the trick of using 'stopping_criteria' to create an iterator.
else:
def generate_with_callback(callback=None, *args, **kwargs):
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
clear_torch_cache()
with torch.no_grad():
shared.model.generate(**kwargs)
def generate_with_streaming(**kwargs):
return Iteratorize(generate_with_callback, [], kwargs, callback=None)
with generate_with_streaming(**generate_params) as generator:
for output in generator:
yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat)
if output[-1] in eos_token_ids:
break
except Exception:
traceback.print_exc()
finally:
t1 = time.time()
original_tokens = len(original_input_ids[0])
new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0)
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
return
def generate_reply_custom(question, original_question, seed, state, stopping_strings=None, is_chat=False):
seed = set_manual_seed(state['seed'])
t0 = time.time()
reply = ''
try:
if not is_chat:
yield ''
if not state['stream']:
reply = shared.model.generate(question, state)
yield reply
else:
for reply in shared.model.generate_with_streaming(question, state):
yield reply
except Exception:
traceback.print_exc()
finally:
t1 = time.time()
original_tokens = len(encode(original_question)[0])
new_tokens = len(encode(original_question + reply)[0]) - original_tokens
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
return
|