GenAILearniverse's picture
Create app.py
320009b verified
import torch
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
# Use a pipeline as a high-level helper
from transformers import pipeline
# model_path = ("../Models/models--distilbert--distilbert-base-uncased-finetuned-sst-2-english"
# "/snapshots/714eb0fa89d2f80546fda750413ed43d93601a13")
analyzer = pipeline("text-classification",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
# analyzer = pipeline("text-classification",
# model=model_path)
# print(analyzer(["This production is good", "This product was quite expensive"]))
def sentiment_analyzer(review):
sentiment = analyzer(review)
return sentiment[0]['label']
def sentiment_bar_chart(df):
sentiment_counts = df['Sentiment'].value_counts()
# Create a bar chart
fig, ax = plt.subplots()
sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%', color=['green', 'red'])
ax.set_title('Review Sentiment Counts')
ax.set_xlabel('Sentiment')
ax.set_ylabel('Count')
# ax.set_xticklabels(['Positive', 'Negative'], rotation=0)
# Return the figure object
return fig
def read_reviews_and_analyze_sentiment(file_object):
# Load the Excel file into a DataFrame
df = pd.read_excel(file_object)
# Check if 'Review' column is in the DataFrame
if 'Reviews' not in df.columns:
raise ValueError("Excel file must contain a 'Review' column.")
# Apply the get_sentiment function to each review in the DataFrame
df['Sentiment'] = df['Reviews'].apply(sentiment_analyzer)
chart_object = sentiment_bar_chart(df)
return df, chart_object
# result = read_reviews_and_analyze_sentiment("../Files/Prod-review.xlsx")
# print(result)
# Example usage:
# df = read_reviews_and_analyze_sentiment('path_to_your_excel_file.xlsx')
# print(df)
demo = gr.Interface(fn=read_reviews_and_analyze_sentiment,
inputs=[gr.File(file_types=["xlsx"], label="Upload your review comment file")],
outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")],
title="@GenAILearniverse Project 3: Sentiment Analyzer",
description="THIS APPLICATION WILL BE USED TO ANALYZE THE SENTIMENT BASED ON FILE UPLAODED.")
demo.launch()
# Example usage:
# Assuming you have a dataframe `df` with appropriate data
# fig = sentiment_bar_chart(df)
# fig.show() # This line is just to visualize the plot in a local environment