Spaces:
Running
Running
File size: 2,123 Bytes
7d1df75 965b267 7d1df75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import os
import torch
import gradio as gr
from PIL import Image
from torchvision.transforms import transforms
from modelscope import snapshot_download
MODEL_DIR = snapshot_download("MuGemSt/HEp2", cache_dir="./__pycache__")
TRANSLATE = {
"Centromere": "着丝粒 Centromere",
"Golgi": "高尔基体 Golgi",
"Homogeneous": "同质 Homogeneous",
"NuMem": "记忆体 NuMem",
"Nucleolar": "核仁 Nucleolar",
"Speckled": "斑核 Speckled",
}
CLASSES = list(TRANSLATE.keys())
def embeding(img_path: str):
compose = transforms.Compose(
[
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.RandomAffine(5),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
img = Image.open(img_path).convert("RGB")
return compose(img)
def infer(target: str):
model = torch.load(f"{MODEL_DIR}/save.pt", map_location=torch.device("cpu"))
if not target:
return None, "请上传细胞图片 Please upload a cell picture!"
torch.cuda.empty_cache()
input: torch.Tensor = embeding(target)
output: torch.Tensor = model(input.unsqueeze(0))
predict = torch.max(output.data, 1)[1]
return os.path.basename(target), TRANSLATE[CLASSES[predict]]
if __name__ == "__main__":
example_imgs = []
for cls in CLASSES:
example_imgs.append(f"{MODEL_DIR}/examples/{cls}.png")
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=gr.Image(
type="filepath", label="上传细胞图像 Upload a cell picture"
),
outputs=[
gr.Textbox(label="图片名 Picture name", show_copy_button=True),
gr.Textbox(label="识别结果 Recognition result", show_copy_button=True),
],
title="请上传 PNG 格式的 HEp2 细胞图片<br>It is recommended to upload HEp2 cell images in PNG format.",
examples=example_imgs,
allow_flagging="never",
cache_examples=False,
)
demo.launch()
|