File size: 1,818 Bytes
7d1df75
 
 
 
 
 
 
bd55f7e
837bdb5
 
 
 
 
 
 
 
7d1df75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837bdb5
7d1df75
 
 
 
 
837bdb5
7d1df75
 
 
 
 
 
 
 
 
 
837bdb5
7d1df75
837bdb5
 
7d1df75
837bdb5
7d1df75
cf9c8e3
7d1df75
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import torch
import gradio as gr
from PIL import Image
from torchvision.transforms import transforms
from modelscope import snapshot_download

MODEL_DIR = snapshot_download("Genius-Society/HEp2", cache_dir="./__pycache__")
CLASSES = [
    "Centromere",
    "Golgi",
    "Homogeneous",
    "NuMem",
    "Nucleolar",
    "Speckled",
]


def embeding(img_path: str):
    compose = transforms.Compose(
        [
            transforms.Resize(224),
            transforms.CenterCrop(224),
            transforms.RandomAffine(5),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        ]
    )
    img = Image.open(img_path).convert("RGB")
    return compose(img)


def infer(target: str):
    model = torch.load(f"{MODEL_DIR}/save.pt", map_location=torch.device("cpu"))
    if not target:
        return None, "Please upload a cell picture!"

    torch.cuda.empty_cache()
    input: torch.Tensor = embeding(target)
    output: torch.Tensor = model(input.unsqueeze(0))
    predict = torch.max(output.data, 1)[1]
    return os.path.basename(target), CLASSES[predict]


if __name__ == "__main__":
    example_imgs = []
    for cls in CLASSES:
        example_imgs.append(f"{MODEL_DIR}/examples/{cls}.png")

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=gr.Image(type="filepath", label="Upload a cell picture"),
            outputs=[
                gr.Textbox(label="Picture name", show_copy_button=True),
                gr.Textbox(label="Recognition result", show_copy_button=True),
            ],
            title="It is recommended to upload HEp2 cell images in PNG format.",
            examples=example_imgs,
            flagging_mode="never",
            cache_examples=False,
        )

    demo.launch()