CosmicNexus / app.py
Genzo1010's picture
Update app.py
7c35586
import streamlit as st
from streamlit_chat import message
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import LlamaCpp
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader
import os
import tempfile
def initialize_session_state():
if 'history' not in st.session_state:
st.session_state['history'] = []
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Hello! Ask me anything about πŸ€—"]
if 'past' not in st.session_state:
st.session_state['past'] = ["Hey! πŸ‘‹"]
def conversation_chat(query, chain, history):
result = chain({"question": query, "chat_history": history})
history.append((query, result["answer"]))
return result["answer"]
def display_chat_history(chain):
reply_container = st.container()
container = st.container()
with container:
with st.form(key='my_form', clear_on_submit=True):
user_input = st.text_input("Question:", placeholder="Ask about your PDF", key='input')
submit_button = st.form_submit_button(label='Send')
if submit_button and user_input:
with st.spinner('Generating response...'):
output = conversation_chat(user_input, chain, st.session_state['history'])
st.session_state['past'].append(user_input)
st.session_state['generated'].append(output)
if st.session_state['generated']:
with reply_container:
for i in range(len(st.session_state['generated'])):
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
def create_conversational_chain(vector_store):
# Create llm
llm = LlamaCpp(
streaming = True,
model_path="mistral-7b-instruct-v0.1.Q2_K.gguf",
temperature=0.75,
top_p=1,
verbose=True,
n_ctx=4096
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
memory=memory)
return chain
def main():
# Initialize session state
initialize_session_state()
st.title("Multi-Purpose Q&A Documents ChatBot:")
# Initialize Streamlit
st.sidebar.title("Document Processing")
uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
if uploaded_files:
text = []
for file in uploaded_files:
file_extension = os.path.splitext(file.name)[1]
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(file.read())
temp_file_path = temp_file.name
loader = None
if file_extension == ".pdf":
loader = PyPDFLoader(temp_file_path)
if loader:
text.extend(loader.load())
os.remove(temp_file_path)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
text_chunks = text_splitter.split_documents(text)
# Create embeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'})
# Create vector store
vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
# Create the chain object
chain = create_conversational_chain(vector_store)
display_chat_history(chain)
if __name__ == "__main__":
main()