File size: 5,710 Bytes
1569310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32b4d4b
 
11231f5
 
 
 
 
 
 
 
1569310
ada7afd
7daa8fa
 
6232889
1569310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650e5f
 
1569310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0060931
1569310
 
47436d9
1569310
 
 
 
e9dff8c
1569310
 
 
 
 
 
 
 
 
 
 
 
 
e9dff8c
45996a4
ba52c7e
e9dff8c
47ab177
e9dff8c
06893f0
b9ebda9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569310
ba52c7e
b9ebda9
e9dff8c
1569310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24abe0b
 
1569310
 
55b140e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import requests
import tensorflow as tf
import keras_ocr
import cv2
import os
import numpy as np
import pandas as pd
from datetime import datetime
import scipy.ndimage.interpolation as inter
import easyocr
from PIL import Image
from paddleocr import PaddleOCR
import socket
from send_email_user import send_user_email
from huggingface_hub import HfApi

# api = HfApi()
# api.upload_folder(
#     folder_path="/media/pragnakalpl20/Projects/Pragnakalp_projects/gradio_demo/images",
#     path_in_repo="my-dataset/images",
#     repo_id="pragnakalp/OCR-image-to-text",
#     repo_type="dataset",
#     ignore_patterns="**/logs/*.txt",
# )

# if not os.path.isdir('images'):
# os.mkdir('images')
# print("create folder--->")
print(os.getcwd())
def get_device_ip_address():

    if os.name == "nt":
        result = "Running on Windows"
        hostname = socket.gethostname()
        result += "\nHostname:  " + hostname
        host = socket.gethostbyname(hostname)
        result += "\nHost-IP-Address:" + host
        return result
    elif os.name == "posix":
        gw = os.popen("ip -4 route show default").read().split()
        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        s.connect((gw[2], 0))
        ipaddr = s.getsockname()[0]
        gateway = gw[2]
        host = socket.gethostname()
        result = "\nIP address:\t\t" + ipaddr  + "\r\nHost:\t\t" + host
        return result
    else:
        result = os.name + " not supported yet."
        return result

            
   
"""
Paddle OCR
"""
def ocr_with_paddle(img):
    finaltext = ''
    ocr = PaddleOCR(lang='en', use_angle_cls=True)
    # img_path = 'exp.jpeg'
    result = ocr.ocr(img)
    
    for i in range(len(result[0])):
        text = result[0][i][1][0]
        finaltext += ' '+ text
    return finaltext

"""
Keras OCR
"""
def ocr_with_keras(img):
    output_text = ''
    pipeline=keras_ocr.pipeline.Pipeline()
    images=[keras_ocr.tools.read(img)]
    predictions=pipeline.recognize(images)
    first=predictions[0]
    for text,box in first:
        output_text += ' '+ text
    return output_text

"""
easy OCR
"""
# gray scale image
def get_grayscale(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Thresholding or Binarization
def thresholding(src):
    return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1]
def ocr_with_easy(img):
    gray_scale_image=get_grayscale(img)
    thresholding(gray_scale_image)
    cv2.imwrite('image.png',gray_scale_image)
    reader = easyocr.Reader(['th','en'])
    bounds = reader.readtext('image.png',paragraph="False",detail = 0)
    bounds = ''.join(bounds)
    return bounds
"""
Generate OCR
"""
def generate_ocr(Method,img):
    try:
        text_output = ''

        print("Method___________________",Method)
        if Method == 'EasyOCR':
            text_output = ocr_withreadme.txt_easy(img)
        if Method == 'KerasOCR':
            text_output = ocr_with_keras(img)
        if Method == 'PaddleOCR':
            text_output = ocr_with_paddle(img)
        save_details(Method,text_output,img)

        return text_output
        # hostname = socket.gethostname()
        # IPAddr = socket.gethostbyname(hostname)
        # print(hostname)
        # print("\nHost-IP-Address:" + IPAddr)
    except Exception as e:
        print("Error in ocr generation ==>",e)
        text_output = "Something went wrong"
        return text_output
"""
Save generated details
"""
def save_details(Method,text_output,img):
    print(img)
    hostname = get_device_ip_address()
    url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_image_to_text'
    myobj = {'Method': Method,'text_output':text_output,'img':img.tolist(),'hostname':hostname}

    x = requests.post(url, json = myobj)
#     method = []
#     img_path = []
#     text = []
#     input_img = ''
#     hostname = ''
#     picture_path = "image.jpg"    
#     curr_datetime = datetime.now().strftime('%Y-%m-%d %H-%M-%S')
#     if text_output:
#         splitted_path = os.path.splitext(picture_path)
#         modified_picture_path = splitted_path[0] + curr_datetime + splitted_path[1]
#         cv2.imwrite("myimage.jpg", img)
#         with open('savedata.txt', 'w') as f:
#             print("write test")
#             f.write("testdata")
#         print("write Successfully")
#         # img = Image.open(r"/home/user/app/")
#         # img.save(modified_picture_path)
#         input_img = modified_picture_path
#         try:
#             df = pd.read_csv("AllDetails.csv")
#             df2 = {'method': Method, 'input_img': input_img, 'generated_text': text_output}
#             df = df.append(df2, ignore_index = True)
#             df.to_csv("AllDetails.csv", index=False)
#         except:
#             method.append(Method)
#             img_path.append(input_img)
#             text.append(text_output)
#             dict = {'method': method, 'input_img': img_path, 'generated_text': text}
#             df = pd.DataFrame(dict,index=None)
#             df.to_csv("AllDetails.csv")

        
#     return send_user_email(input_img,hostname,text_output,Method)
    return x

"""
Create user interface for OCR demo
"""

image = gr.Image(shape=(224, 224),elem_id="img_div")
method = gr.Radio(["EasyOCR", "KerasOCR", "PaddleOCR"],elem_id="radio_div")
output = gr.Textbox(label="Output")

demo = gr.Interface(
    generate_ocr,
    [method,image],
    output,
    title="Optical Character Recognition",
    description="Try OCR with different methods", 
    theme="darkpeach",
    css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}",
    allow_flagging = 'manual'
)

demo.launch(enable_queue = False)