Spaces:
Runtime error
Runtime error
import gradio as gr | |
from musicautobot.utils.setup_musescore import play_wav | |
from music21.midi.translate import midiFileToStream | |
from pathlib import Path | |
from midi2audio import FluidSynth | |
# from musicautobot.numpy_encode import * | |
# from musicautobot.config import * | |
from musicautobot.music_transformer import * | |
from musicautobot.utils.midifile import * | |
# from musicautobot.utils.file_processing import process_all | |
import pickle | |
import subprocess | |
import os | |
print(os.getcwd()) | |
# Load the stored data. This is needed to generate the vocab. | |
data_dir = Path('.') | |
data = load_data(data_dir, 'data.pkl') | |
# Default config options | |
config = default_config() | |
config['encode_position'] = True | |
# Load our fine-tuned model | |
learner = music_model_learner( | |
data, | |
config=config.copy(), | |
pretrained_path='model.pth' | |
) | |
def process_midi(midi_file): | |
name = Path(midi_file.name) | |
# create the model input object | |
item = MusicItem.from_file(name, data.vocab); | |
# full is the prediction appended to the input | |
pred, full = learn.predict(item, n_words=100) | |
# convert to stream and then MIDI file | |
stream = full.to_stream() | |
out = music21.midi.translate.streamToMidiFile(stream) | |
# save MIDI file | |
out.open('result.midi', 'wb') | |
out.write() | |
out.close() | |
# use fluidsynth to convert MIDI to WAV so the user can hear the output | |
sound_font = "/usr/share/sounds/sf2/FluidR3_GM.sf2" | |
FluidSynth(sound_font).midi_to_audio('result.midi', 'result.wav') | |
return 'result.wav' | |
iface = gr.Interface( | |
fn=process_midi, | |
inputs="file", | |
outputs="audio" | |
) | |
iface.launch() |